The flatness properties of diagonal S-posets

Leting Feng

College of Mathematics and Statistics, Northwest Normal University Lanzhou 730070, Gansu, China

Abstract This paper investigates the flatness properties of diagonal S-posets D(S) over pomonoids. We characterize pomonoids for which D(S) satisfies various flatness conditions, including (E^*) , (P_E) , (P'), and (E'). Additionally, we explore the transfer of these properties from products of S-posets to their components and provide conditions under which these properties transfer from S-posets to their products.

Key Words: Pomonoid S-posets; Flatness properties; Diagonal S-posets; Product of pomonoids

2010 Mathematics Subject Classification: 10M50; 06F05.

1. Introduction and preliminaries

A left S-act over a monoid S is a nonempty set B equipped with a mapping $S \times B \longrightarrow B$, denoted $(s,b) \mapsto sb$, satisfying s(tb) = (st)b and $1 \cdot b = b$ for all $s,t \in S$ and $b \in B$. Right S-acts are defined similarly. The class of all left and right S-acts is denoted by $\mathbf{S} - \mathbf{Act}$ and $\mathbf{Act} - \mathbf{S}$, respectively. A subset C of a left S-act B is an S-subact if it is closed under the action of S. Any left ideal of S is a subact of s, and similarly, any right ideal is a subact of s.

The diagonal S-act D(S) is defined as the right S-act $S \times S$ with componentwise S-action. Diagonal S-acts form a special class of S-acts, and their flatness properties have been extensively studied in [1, 5, 13, 15]. These studies aim to determine conditions under which the diagonal S-act possesses certain flatness properties and to explore the separation of these properties.

A pomonoid is a monoid S equipped with a partial order compatible with the binary operation. A left S-poset is a partially ordered set A with an S-action that is monotonic in each variable, satisfying s(ta) = (st)a and $1 \cdot a = a$ for all $s, t \in S$ and $a \in A$.

An S-subposet B of an S-poset A is strongly convex if $a \leq b$ and $b \in B$ imply $a \in B$. An S-poset A is decomposable if it can be expressed as a disjoint union of nonempty

^{*}Corresponding author: Leting Feng, E-mail: 512987351@qq.com

strongly convex S-subposets A_1 and A_2 ; otherwise, it is indecomposable.

We know that x, y of an ordered set X are comparable if $x \leq y$ or $y \leq x$ and denote this relation by $x \bowtie y$.

Lemma 1.1 ([18] Proposition 2.6) Let A be an S-poset and $a, b \in A$. Then a and b belong to the same strongly convex indecomposable component of A if and only if there exist $a_1, \dots, a_n \in A$, $s_1, t_1, \dots, s_n, t_n \in S$ such that

$$a \bowtie s_1 a_1,$$
 $t_1 a_1 \bowtie s_2 a_2,$ $t_2 a_2 \bowtie s_3 a_3,$ \vdots $t_{n-1} a_{n-1} \bowtie s_n a_n,$ $t_n a_n \bowtie b.$

An S-morphism $\phi:A\longrightarrow B$ between left S-posets is called an S-poset morphism if it is order-preserving.

Flatness properties of S-posets were first studied by Fakhruddin in the 1980s [6,7], and further developed in [2,3,4,19]. In [2,16], properties such as (po-)flatness, (po-)torsion freeness, Condition (P), and (P_w) were introduced. An element c of a pomonoid S is right po-cancellable if $sc \leq sc'$ implies $s \leq s'$ for all $s, s' \in S$. An S-poset A_S is po-torsion free if $ac \leq a'c$ implies $a \leq a'$ for all $a, a' \in A$ and right po-cancellable $c \in S$.

An S-poset A_S is po-flat if for every embeddings ${}_SB \to_S C$ of left S-posets, the induced map $A \otimes_S B \to A \otimes_S C$ is order-injective. A_S is (principally) weakly po-flat if the functor $A_S \otimes -$ preserves order embeddings of (principal) left ideals of pomonoid S into S.

Condition (P) is satisfied by an S-poset if, for all $a, a' \in A_S$ and $s, s' \in S$, $as \leqslant a's'$ implies the existence of $a'' \in A_S$, $u, v \in S$ such that a = a''u, a' = a''v and $us \leqslant vs'$. Similarly,

Condition (P_w) requires that $as \leq a's'$ implies the existence of $a'' \in A_S$, $u, v \in S$ such that $a \leq a''u$, $a''v \leq a'$ and $us \leq vs'$.

The diagonal S-poset $S \times S$ is denoted by D(S). In [12], Roghaieh characterized pomonoids over which direct products of (po-)torsion free, principally weakly, and weakly (po-)flat S-posets retain these properties. This paper extends the study of flatness properties of diagonal S-posets.

In this paper, we continue discussing flatness properties of the diagonal S-posets. Some results on S-acts can be also obtained as applications of the results in this paper.

2. (principally) weakly po-flat, Condition (E^*) , Condition (P') and Condition (E') of diagonal S-posets D(S)

This section investigates the (principally) weakly po-flatness of diagonal S-posets D(S). We characterize pomonoids for which D(S) satisfies Conditions (E^*) . Additionally, we address the transfer of properties such as (P_E) , (PWP_E) , (P') and (E') from S-posets to their (finite) products.

Definition 2.1 A pomonoid S is finite (principally) weakly po-coherent if finite products of (principally) weakly flat S-posets are (principally) weakly flat.

It is mentioned in [16 Theorem 3.12], a weakly po-flat left S-poset A is equality to it is principally weakly po-flat and satisfies the following Condition (W) which means if $xa \leq ya'$ for $a, a' \in A$, $x, y \in S$, then there exist $a'' \in A$, $p \in xS$, $q \in yS$ such that $p \leq q$, $xa \leq pa''$, $qa'' \leq ya'$.

Next, let's memorize some notations. For any $(p,q) \in D(S)$, $\widehat{S(p,q)} = \{(u,v) \in D(S) | \exists w \in S, u \leqslant wp, wq \leqslant v \}$. If $Ss \cap (St] \neq \emptyset$, write $H(s,t) = \{(as,a't) | as \leqslant a't \}$. We know the diagonal S-poset D(S) is weakly po-flat if and only if it is principally weakly po-flat and $Ss \cap (St] \neq \emptyset$ or for each (as,a't) and (bs,b't) in H(s,t), there exists $(p,q) \in H(s,t)$ such that $(as,a't),(bs,b't) \in \widehat{S(p,q)}$.

Theorem 2.2 A pomonoid S is finite weakly po-coherent if and only if D(S) is weakly po-flat.

Proof We suppose that the diagonal S-poset D(S) is weakly po-flat and consider two weakly po-flat S-posets A_S and B_S . $(A_S \times B_S)$ is also principally weakly po-flat since D(S) is principally weakly po-flat. Thus we claim that $(A_S \times B_S)$ satisfies Condition (W). Let $(a,b)s \leq (a',b')t$ for $a,a' \in A_S$, $b,b' \in B_S$ and $s,t \in S$. From weak po-flatness of A_S and B_S , there exist $a'' \in A_S$, $b'' \in B_S$, $p_1,p_2 \in S_S$, $q_1,q_2 \in S_S$ such that $p_1 \leq q_1$, $p_2 \leq q_2$, $as \leq a''p_1$, $a''q_1 \leq a't$ and $bs \leq b''p_2$, $b''q_2 \leq b't$. By statement above, there exists $(p,q) \in H(s,t)$ such that $(as,a't),(bs,b't) \in \widehat{S(p,q)}$. That is, $as \leq wp$, $wq \leq a't$ and $bs \leq w'p$, $w'q \leq b't$ for some $w,w' \in S$, so $(a,b)s \leq (w,w')p$, $(w,w')q \leq (a',b')t$ as required.

In [16], the author introduced the concept of Condition (PF) on S-posets, and proved that A_S is strongly flat if and only if A_S satisfies Condition (PF), as follows Lemma 2.3

Lemma 2.3 ([16] Proposition 2.3) Let B_S is a left S-poset. B_S is strongly flat if and only if it is satisfies Condition (PF) which $sb \leq s'b'$, $tb \leq t'b'$ for $b, b' \in B_S$, $s, s', t, t' \in S$, then there exist $b'' \in B_S$, $u, v \in S$ such that b = ub'', b' = vb'', $su \leq s'v$ and $tu \leq t'v$.

In fact, the reference to this conclusion in [20] is not true, Condition (PF) is not equivalent to strong flatness and it is just a generalization of strong flatness. Furthermore, the author introduced a new concept from [20].

Condition (E^*) is satisfied that if $as \leq at$, then there exist $a' \in A_S$, $u, v \in S$ such that a = a'u = a'v, $us \leq vt$ and $u \leq v$. Here we give a characterization of pomonoids for

the diagonal S-posets D(S) satisfying Condition (E^*) .

Theorem 2.4 For any pomonoid S, the following conditions are equivalent:

- (1) If A_1, \dots, A_n satisfy Condition (E^*) , then $A_1 \times \dots \times A_n$ satisfies Condition (E^*) ;
- (2) The diagonal S-poset D(S) satisfies Condition (E^*) ;
- (3) For any $a, b \in S$, $(a, a), (b, b) \in L(s, s')$, there exist $u, v \in S$ with $(u, v) \in L(s, s') \cap L(1, 1)$ such that $(a, a), (b, b) \in S(u, v)$.

Proof $(1) \Rightarrow (2)$ Obviously.

- $(2) \Rightarrow (3)$ Let the diagonal S-poset D(S) satisfies Condition (E^*) and $(a,a), (b,b) \in L(s,s'), \ a,b \in S$. Then $as \leqslant as', \ bs \leqslant bs'$, then implies $(a,b)s \leqslant (a,b)s'$. By Condition (E^*) , there exist $(a',b') \in D(S)$ and $u,v \in S$ such that $(a,b) = (a',b')u = (a',b')v, \ us \leqslant vs'$ and $u \leqslant v$. Thus, $(u,v) \in L(s,s') \cap L(1,1), \ (a,a), \ (b,b) \in S(u,v)$.
- $(3)\Rightarrow (1)$ Assume that A_1,\cdots,A_n satisfy Condition (E^*) . Let $(a_1,\cdots,a_n)s\leqslant (a_1,\cdots,a_n)s'\in\Pi_{i\in I}A_i,\ a_i,a_i'\in A_i,\ i\in I,\ s,s'\in S.$ Then $a_is\leqslant a_is'$ and by Condition (E^*) , there exist $a_i'\in A_i,\ p_i,q_i\in S$ such that $a_i=a_i'p_i=a_i'q_i,\ p_is\leqslant q_is',$ It follow that $(p_i,q_i)\in L(s,s').$ By assumption, there exists $(p,q)\in D(S)$ with $(p,q)\in L(s,s')\cap L(1,1)$ such that $(p_i,q_i)\in S(p,q).$ That is, $(p_i,q_i)=w_i(p,q)$ for some $w_i\in S$, and $ps\leqslant qs',\ p\leqslant q.$ Then

$$(a_1, \dots, a_n) = (a'_1, \dots, a'_n)p_i = (a'_1, \dots, a'_n)q_i$$

= $(a'_1w_1, \dots, a'_nw_n)p = (a'_1w_1, \dots, a'_nw_n)q_i$

as required. \Box

Proposition 2.5 For any pomonid S, the followings are equivalent:

- (1) The direct product of every nonempty family of right S-posets satisfying Condition (E^*) satisfies Condition (E^*) :
 - (2) $(S^{\Gamma})_S$ satisfies Condition (E^*) for every non-empty set Γ ;
- (3) For every $s, s' \in S$, the set $L(s, s') \cap L(1, 1)$ is either empty or a cyclic left S-poset. Proof $(1) \Rightarrow (2)$ Obviously.
- $(2) \Rightarrow (3)$ Suppose that $L(s,s') \neq \emptyset$, $s,s' \in S$. Let \vec{u} be the element of S^{Γ} whose γ th component is u_{γ} and $(u_{\gamma},u_{\gamma}) \in L(s,s')$. Then $\vec{u}s \leqslant \vec{u}s'$ in S^{Γ} . By assumption, S^{Γ} satisfies Condition (E^*) , there exist $\vec{z} \in S^{\Gamma}$ and $p,q \in S$ such that $\vec{u} = \vec{z}p = \vec{z}q$, $ps \leqslant qs'$ and $p \leqslant q$. Thus $(p,q) \in L(s,s') \cap L(1,1)$, so that $(p,q) = (u_j,v_j)$ for some $j \in \Gamma$. If $\gamma \in \Gamma$, then $(u_{\gamma},u_{\gamma}) = z_{\gamma}(p,q) = z_{\gamma}(u_j,v_j)$ where z_{γ} is the γ th component of \vec{z} . It follows that $L(s,s') \cap L(1,1)$ is a cyclic left S-poset.
- (3) \Rightarrow (1) Let $A = \prod_{i \in I} A_i$ be a product of right S-posets satisfying Condition (E^*) . Suppose that $\vec{x}s \leqslant \vec{x}s'$ where $s, s' \in S$ and $\vec{x} = (x_i) \in A$. For each $i \in I$, $x_i s \leqslant x_i s'$ and as A_i satisfies Condition (E^*) there exist $z_i \in A_i$ and $u_i, v_i \in S$ such that $x_i = z_i u_i = z_i v_i$, $u_i s \leqslant v_i s'$ and $u_i \leqslant v_i$. So $(u_i, v_i) \in L(s, s') \cap L(1, 1)$ and by assumption, $(u_i, v_i) = r_i(p, q)$ for some $r_i \in S$, $(p, q) \in L(s, s') \cap L(1, 1)$. We have $x_i = z_i r_i p = z_i r_i q$, $ps \leqslant qs'$ and $p \leqslant q$. Putting $\vec{w} = (z_i r_i)_{i \in I} \in A$, then $\vec{x} = \vec{w}p = \vec{w}q$ as required.

Next, we demonstrate that Condition (E^*) transfers from S-posets to their products. Recall that a pomonoid T is called a left pogroup if, for all $a, b \in T$ there exists a unique $t \in T$ such that ta = b.

Proposition 2.6 Let $S = T^1$, where T is a left pogroup. If A_i for each $i \in I$ satisfies Condition (E^*) , then $\Pi_{i \in I} A_i$ also satisfies Condition (E^*) .

Proof Suppose $(a_i)_I s \leqslant (a_i)_I s'$ where $(a_i)_I \in \Pi_{i \in I} A_i$ and $s, s' \in S$. This implies that $a_i s = a_i s'$ for all $i \in I$. According to the given assumption, for each $i \in I$ there exist $a'_i \in A$, $u_i, v_i \in S$ such that $a_i = a'_i u_i = a'_i v_i$, $u_i \leqslant v_i$ and $u_i \leqslant v_i$. Now, consider two cases. If $u_j = v_j = 1$ for some $j \in I$, then $s \leqslant s'$. Otherwise, fix $k \in I$. Then for every $j \in I$, $j \neq k$, there exists $x_j \in T$ such that $u_j = x_j u_k$ and $v_j = y_j v_k$ for $y_j \in T$. Let $b_k = a'_k$ and $b_j = a' x_j = a' y_j$ for every $j \neq k$. Then, $(a_i)_I = (a' u_i)_I = (b_i)_I u_k$ and $(a_i)_I = (a' v_i)_I = (b_i)_I v_k$, which shows that $\Pi_{i \in I} A_i$ satisfies Condition (E^*) .

Now we address the question of when Condition (P_E) is transferred from products of S-posets to their individual components. We define that an S-poset A_S satisfies C-ondition (P_E) , when for any $a, a' \in A_S$, $s, s' \in S$, the relation $as \leq a's'$ implies the existence $a'' \in A_S$, $u, v \in S$, $e, f \in E(S)$ such that ae = a''ue, a'f = a''vf, es = s, fs' = s' and $us \leq vs'$.

Recall from [2] a pomonoid S called weakly right reversible in case $Ss \cap (St] \neq \emptyset$ for all $s, t \in S$, that is, for all $s, t \in S$, there exist $u, u' \in S$ such that $us \leq u't$. Then we can show the following Theorem 2.7.

Theorem 2.7 Let S be a pomonoid. The following conditions are equivalent:

- (1) If $\Pi_{i \in I} A_i$ satisfies Condition (P_E) , then each A_i satisfies also Condition (P_E) ;
- (2) Θ_S satisfies Condition (P_E) ;
- (3) S is a weakly right reversible pomonoid.

Proof (1) \Rightarrow (2) Since $S \times \Theta_S \cong S$, this implication is straightforward.

- $(2) \Rightarrow (3)$ The proof is similar to [8, Theorem 6.2].
- $(3) \Rightarrow (1)$ Assume that $\Pi_{i \in I} A_i$ satisfies Condition (P_E) and $a_i s \leqslant a'_i t$ where $a_i, a'_i \in A_S$, $s, t \in S$. Since S is weakly right reversible pomonoid, there exist $u_1, v_1 \in S$ such that $u_1 s \leqslant v_1 t$. Fix an element $a_j \in A_j$ for $j \neq i$, we define

$$u_1s\leqslant v_1t$$
. Fix an element $a_j\in A_j$ for $j\neq i$, we define
$$c_j=\left\{ \begin{array}{ll} a_ju_1, & \text{if } j\neq i\\ a_i, & \text{if } j=i \end{array} \right. \text{ and } \quad d_j=\left\{ \begin{array}{ll} a_jv_1, & \text{if } j\neq i\\ a_i', & \text{if } j=i \end{array} \right..$$

Then $(c_j)_I s \leq (d_j)_I t$, according to the given assumption, there exist $(a''_j)_I \in \Pi_{i \in I} A_i$, $u, v \in S$, $e, f \in E(S)$ such that $(c_j)_I e = (a''_j)_I u e$, $(d_j)_I f = (a''_j)_I v f$, es = s, ft = t and $us \leq vt$. Thus, $a_i e = a''_i u e$, $a'_i f = a''_i v f$. From these relations, it can be concluded that A_i satisfies Condition (P_E) .

Next, we will expound on certain pomonids with respect to Condition (P_E) and (PWP_E) . As per the definition in [9] an S-poset is termed weakly locally cyclic when every finitely generated S-subposet of A is contained in a cyclic S-poset. A principal left ideal of S that also exhibits the property of being weakly locally cyclic is referred to as a weakly locally principal left ideal. According to the reference [12], the set $L(a,b) := \{(u,v) \in S \times S | ua \leq a \}$

vb} is a left S-subposet of D(S), and the set $l(a,b) := \{u \in S | ua \leq vb\}$ is a left ideal of S.

Definition 2.8 The set L(x, y) is said to be weakly locally cyclic idempotent if, for every fnite subset $\{(x_1, y_1), \dots, (x_n, y_n)\}$ of $L(x, y), x, y \in S$, there exist $e_1, \dots, e_{n-1}, f_1, \dots, f_{n-1} \in$ $E(S), u, v \in S$ such that $e_j x = x$, $f_j y = y$, $(u, v) \in L(x, y)$ and $(x_i e_1 \dots e_{n-1}, y_i f_1 \dots f_{n-1}) \in$ $S(ue_{n-1}, vf_{n-1}), \text{ for } 1 \leq j \leq n-1, 1 \leq i \leq n.$

Lemma 2.9 The set L(x,y) is weakly locally cyclic idempotent for $x,y \in S$ if and only if for every finite subset $\{(x_1,y_1),(x_2,y_2)\}$ of L(x,y), there exist $e, f \in E(S)$, $u,v \in S$ such that ex = x, fy = y, $(u,v) \in L(x,y)$ and $(x_1e,y_1f),(x_2e,y_2f) \in S(ue,vf)$.

Proof Necessity. The proof is clear.

Sufficiency. By using induction on n. Let $\{(x_1, y_1), \dots, (x_n, y_n)\} \subseteq L(x, y)$. According to assumption, there exist $e_1, \dots, e_{n-2}, f_1, \dots, f_{n-2} \in E(S), w, z \in S$ such that $e_k x = x$, $f_k y = y$, $(w, z) \in L(x, y)$ and $(x_j e_1 \dots e_{n-2}, y_j f_1 \dots f_{n-2}) \in S(w e_{n-2}, z f_{n-2})$ for $1 \le k \le n-2, 1 \le j \le n-1$. Thus, for each $1 \le j \le n-1$, we have that

$$(x_j e_1 \cdots e_{n-2}, y_j f_1 \cdots f_{n-2}) = p_j(w e_{n-2}, z f_{n-2})$$

for some $p_i \in S$. Since $(x_n, y_n) \in L(x, y)$, so

$$x_n x \leqslant y_n y \Rightarrow x_n e_1 x \leqslant y_n f_1 y \Rightarrow x_n e_1 e_2 x \leqslant y_n f_1 f_2 y$$

 $\Rightarrow \cdots \Rightarrow x_n e_1 \cdots e_{n-2} x \leqslant y_n f_1 \cdots f_{n-2} y,$

it follows that $(x_n e_1 \cdots e_{n-2}, y_n f_1 \cdots f_{n-2}) \in L(x, y)$. Since $(w, z) \in L(x, y)$, which implies $(we_{n-2}, zf_{n-2}) \in L(x, y)$, by assumption, there exist $e_{n-1}, f_{n-1} \in E(S), u, v \in S$ such that $e_{n-1}x = x, f_{n-1}y = y, (u, v) \in L(x, y)$ and

$$(x_n e_1 \cdots e_{n-2} e_{n-1}, y_n f_1 \cdots f_{n-2} f_{n-1}), (w e_{n-2} e_{n-1}, z f_{n-2} f_{n-1}) \in S(u e_{n-1}, v f_{n-1}).$$

And then

$$we_{n-2}e_{n-1} = que_{n-1}, \ zf_{n-2}f_{n-1} = qvf_{n-1}$$

for some $q \in S$. And for any $1 \leq j \leq n-1$, $e_j x = x$, $f_j y = y$, $(u, v) \in L(x, y)$ and

$$(x_ie_1\cdots e_{n-2},y_if_1\cdots f_{n-2})=p_i(we_{n-2},zf_{n-2}).$$

Thus, $x_i e_1 \cdots e_{n-2} = p_i w e_{n-2}$ implies

$$x_j e_1 \cdots e_{n-2} e_{n-1} = p_j w e_{n-2} e_{n-1} = p_j q u e_{n-1}$$

and from $y_j f_1 \cdots f_{n-2} = p_j z f_{n-2}$, imples

$$y_i f_1 \cdots f_{n-2} f_{n-1} = p_i z f_{n-2} f_{n-1} = p_i q v f_{n-1}.$$

So for any $1 \leq k \leq n$,

$$(y_k e_1 \cdots e_{n-1}, y_k f_1 \cdots f_{n-1}) \in S(u e_{n-1}, v f_{n-1}),$$

as required. \Box

Theorem 2.10 Let S be a pomonoid. The following conditions are equivalent:

- (1) If A_1, \dots, A_n satisfy Condition (P_E) where $n \in \mathbb{N}$, then $\prod_{i=1}^n A_i$ satisfies Condition (P_E) ;
 - (2) If A_S and B_S satisfy Condition (P_E) , then $(A_S \times B_S)$ satisfies Condition (P_E) ;
 - (3) The diagonal S-poset D(S) satisfies Condition (P_E) ;
- (4) For any $a,b \in S$, the set L(a,b) is either empty or else a weakly locally cyclic idempotent left S-poset.

Proof $(1) \Rightarrow (2) \Rightarrow (3)$ It is clear.

 $(3) \Rightarrow (4)$ Consider $a, b \in S$, let $(x, y), (z, w) \in L(a, b)$. This implies that $(x, z)a \leq (y, w)b$, according to relevant properties, there exist $e, f \in E(S), u, v \in S, (a'', b'') \in D(S)$ such that

$$(x,z)e = (a'',b'')ue, (y,w)f = (a'',b'')vf, ea = a, fb = b, ua \le vb.$$

Consequently, we have $(u, v) \in L(a, b)$ and $(xe, yf), (ze, wf) \in S(ue, vf)$, by Lemma 2.9, L(a, b) a weakly locally cyclic idempotent left S-poset.

 $(4) \Rightarrow (1)$ Assume that A_i satisfies Condition (P_E) for $1 \leqslant i \leqslant n$. Consider $(a_1, \dots, a_n)x \leqslant (b_1, \dots, b_n)y$ where $(a_1, \dots, a_n), (b_1, \dots, b_n) \in \prod_{i=1}^n A_i$ and $x, y \in S$. This implies that $a_i x \leqslant b_i y$ and Since Condition (P_E) , there exist $e_i, f_i \in E(S), u_i, v_i \in S, d_i \in A_i$ such that

$$a_i e_i = d_i u_i e_i, \ b_i f_i = d_i v_i f_i, \ e_i x = x, \ f_i y = y, \ u_i x \leqslant v_i y.$$

Consequently, $(u_i, v_i) \in L(x, y)$. By assumption, there exist $g_1, \dots, g_{n-1}, h_1, \dots, h_{n-1} \in E(S)$, $p, q \in S$ such that $g_i x = x$, $h_i y = y$, $(p, q) \in L(x, y)$, $(u_j g_1 \dots g_{n-1}, v_j h_1 \dots h_{n-1}) \in S(pg_{n-1}, qh_{n-1})$ where $1 \leq i \leq n-1$, $1 \leq j \leq n$. Now, let's analyze the following equalities step by step,

$$(a_{1}, \dots, a_{n})e_{1} \dots e_{n}g_{1} \dots g_{n-1} = (a_{1}e_{1} \dots e_{n}, \dots, a_{n}e_{n}e_{1} \dots e_{n-1})e_{1} \dots e_{n}g_{1} \dots g_{n-1}$$

$$= (d_{1}u_{1}e_{1} \dots e_{n}, \dots, d_{n}u_{n}e_{n}e_{1} \dots e_{n-1})e_{1} \dots e_{n}g_{1} \dots g_{n-1}$$

$$= (d_{1}u_{1}, \dots, d_{n}u_{n})e_{1} \dots e_{n}g_{1} \dots g_{n-1}$$

$$= (d_{1}u_{1}g_{1} \dots g_{n-1}, \dots, d_{n}u_{n}g_{1} \dots g_{n-1})e_{1} \dots e_{n}g_{1} \dots g_{n-1}$$

$$= (d_{1}z_{1}pg_{n-1}, \dots, d_{n}z_{n}pg_{n-1})e_{1} \dots e_{n}g_{1} \dots g_{n-1} \ (z_{i} \in S)$$

$$= (d_{1}z_{1}, \dots, d_{n}z_{n})pe_{1} \dots e_{n}g_{1} \dots g_{n-1}$$

so $(b_1, \dots, b_n) f_1 \dots f_n h_1 \dots h_{n-1} = (d_1 z_1, \dots, d_n z_n) q f_1 \dots f_n h_1 \dots h_{n-1}$. These show that $\prod_{i=1}^n A_i$ satisfies Condition (P_E) .

Similarly, we obtain the following Theorem 2.11. An S-poset A_S is said to satisfy Condition (PWP_E) if, for all $a, a' \in A_S$, $s \in S$, $as \leqslant a's$ implies the existence of $a'' \in A_S$, $u, v \in S$, $e, f \in E(S)$ such that ae = a''ue, a'f = a''vf, es = s = fs and $us \leqslant vs$.

Theorem 2.11 Let S be a commutative pomonoid. The following conditions are equivalent:

- (1) If A_1, \dots, A_n satisfy Condition (PWP_E) where $n \in \mathbb{N}$, then $\prod_{i=1}^n A_i$ satisfies Condition (PWP_E);
- (2) If A_S and B_S satisfy Condition (PWP_E), then $(A_S \times B_S)$ satisfies Condition (PWP_E);
 - (3) The diagonal S-poset D(S) satisfies Condition (PWP_E) ;
- (4) For any $s \in S$, the set L(s,s) is either empty or else a weakly locally cyclic idempotent left S-poset.

An S-poset A_S satisfies Condition (P') when, for all $a, a' \in A_S$ and $s, s', z \in S$, $as \leq a's'$ and sz = s'z imply there exist $a'' \in A_S$, $u, v \in S$ such that a = a''u, a' = a''v and $us \leq vs'$.

Theorem 2.12 Let S be a pomonoid and ρ be a right order congruence on S. Then S/ρ satisfies Condition (P') if and only if for any $x, y, s, t, t' \in S$, $xs\rho ys'$ and $sz \leqslant s'z$, imply there exist $u, v \in S$ such that us = vs', $x\rho u$ and $y\rho v$.

Proof Necessity. Assume that S/ρ satisfies Condition (P'). Given any $x, y, s, s', z \in S$ with $xs\rho ys'$ and $sz \leqslant s'z$, we have $[x]_{\rho}s \leqslant [y]_{\rho}s' \in S/\rho$. According to (P'), there exist $u', v' \in S$ such that $u's \leqslant v's'$, $[x]_{\rho} = [z]_{\rho}u$ and $[y]_{\rho} = [z]_{\rho}v$. If u = zu', v = zv', from these, we can claim that $x\rho u$, $y\rho v$ and us = vs'.

Sufficiency. Suppose $[x]_{\rho}s \leq [y]_{\rho}s' \in S/\rho$. For any $x, y, s, t, t' \in S$, $sz \leq s'z$. Then $xs\rho ys'$, so by the given assumption, there exist $u, v \in S$ such that $x\rho u, y\rho v$ and us = vs'. This means, $[x]_{\rho} \leq [1]_{\rho}u$, $[y]_{\rho} \leq [1]_{\rho}v$. Therefore, we obtain S/ρ satisfies Condition (P'). \square

Let S be a pomonoid and $P \subseteq S$ be sub-pomonoid of S. P is said to be quasi weakly right reversible, if for any $s, s' \in S$, $z \in S$, $sz \leqslant s'z$ implies there exist $u, v \in P$ such that $us \leqslant vs'$.

Theorem 2.13 Let S be a pomonoid. The following conditions are equivalent:

- (1) If the direct product $\Pi_{i \in I} A_i$ satisfies Condition (P'), then each A_i satisfies Condition (P');
 - (2) Θ_S satisfies Condition (P');
 - (3) S is a quasi weakly right reversible pomonoid.

Proof (1) \Rightarrow (2) Since $S \times \Theta_S \cong S$, this implication is straightforward.

 $(2) \Rightarrow (3)$ Given that $S/S_S \cong \Theta_S$, according to Theorem 2.12, $sz \leqslant s'z$ implies for any $s,t,z \in S$, there exist $u,v \in S$ such that $us \leqslant vt$. This means, S is quasi weakly right reversible pomonoid.

 $(3) \Rightarrow (1)$ The proof is analogous to that of Theorem 2.7.

Theorem 2.14 Let S be a pomonoid. The following conditions are equivalent:

- (1) If A_1, \dots, A_n satisfy Condition (P') where $n \in \mathbb{N}$, then $\prod_{i=1}^n A_i$ satisfies Condition (P');
 - (2) If A_S and B_S satisfy Condition (P'), then $(A_S \times B_S)$ satisfies Condition (P');

- (3) The diagonal S-poset D(S) satisfies Condition (P');
- (4) For any $a, b \in S$, the set L(a, b) is either empty or else if there exists $z \in S$ such that $(a, b) \in \rho_z$, then L(a, b) is weakly locally cyclic left S-poset.

Proof $(1) \Rightarrow (2) \Rightarrow (3)$ It is clear.

- $(3) \Rightarrow (4)$ Let $L(a,b) \neq \emptyset$ for any $a,b \in S$. Suppose that there exists $z \in S$ such that $(a,b) \in \rho_z$, $(x,y), (x',y') \in L(a,b)$. Then $(x,x')a \leqslant (y,y')b$ and $az \leqslant bz$. By assumption for some $z,z',u,v \in S$ such that (x,x')=(z,z')u, (y,y')=(z,z')v and $ua \leqslant vb$. So $(u,v) \in L(a,b)$, (x,y)=z(u,v), (x',y')=z'(u,v). Thus, L(a,b) is a weakly locally cyclic left S-poset.
- $(4) \Rightarrow (1)$ Let $(a_1, \dots, a_n), (a'_1, \dots, a'_n) \in \Pi_{i=1}^n A_i$ and $s, t, z \in S$. Assume that $(a_1, \dots, a_n)s \leqslant (a'_1, \dots, a'_n)t$ and $sz \leqslant tz$. For each i where $1 \leqslant i \leqslant n$, it follows that $a_is \leqslant a'_it$ and $sz \leqslant tz$, According to the relevant properties, there exist $b_i \in A_i$ and $u_i, v_i \in S$ such that $a_i = b_iu_i, a'_i = b_iv_i$ and $u_is \leqslant v_it$. Thus, $(u_i, v_i) \in L(s, t), (s, t) \in \rho_z$. Based on the given assumption, there exists $(u, v) \in L(s, t)$ such that $(u_i, v_i) \in S(u, v)$. And so $us \leqslant vt$ for some $p_i \in S$, $(u_i, v_i) = p_i(u, v)$, then for $1 \leqslant i \leqslant n$, $a_i = b_iu_i = b_ip_iu$, $a'_i = b_iv_i = b_ip_iv$ and $us \leqslant vt$. Consequently, $(a_1, \dots, a_n) = (b_1p_1, \dots, b_np_n)u$, $(a'_1, \dots, a'_n) = (b_1p_1, \dots, b_np_n)v$ and $us \leqslant vt$, that is, $\Pi_{i=1}^n A_i$ satisfies Condition (P'). \square

Theorem 2.15 Let S be a pomonoid. The following conditions are equivalent:

- (1) The direct product of every non-empty family of right S-posets satisfying Condition (P') satisfies Condition (P');
 - (2) $(S^{\Gamma})_S$ satisfies Condition (P'), for any nonempty set Γ ;
- (3) For any $x, y \in S$, the set L(x, y) is either empty or else there exists $z \in S$ such that $(x, y) \in \rho_z$, then L(x, y) is cyclic left S-poset.

Proof $(1) \Rightarrow (2)$ It is clear.

- $(2)\Rightarrow (3)$ Consider $x,y\in S$ with $L(x,y)\neq\varnothing$. Assume that there exists an element $z\in S$ such that $(x,y)\in\rho_z$. Let $L(x,y)=\{(s_i,t_i)|i\in I\}$, and define $\overrightarrow{s},\overrightarrow{t}\in(S^I)_S$ where s_i,t_i are the ith components of $\overrightarrow{s},\overrightarrow{t}$ respectively. We have $\overrightarrow{s}x\leqslant\overrightarrow{t}y$ in $(S^I)_S,\,xz\leqslant yz$. Given the assumption that $(S^\Gamma)_S$ satisfies Condition (P'), it follows that there exist $u,v\in S,\,\overrightarrow{z}\in(S^\Gamma)_S$ such that $\overrightarrow{s}=\overrightarrow{z}u,\,\overrightarrow{t}=\overrightarrow{z}q$ and $ux\leqslant vy$. Thus, $(u,v)\in L(x,y)$, we have $(s_i,t_i)=z_i(u,v)$, where z_i is the ith component of \overrightarrow{z} . Therefore, L(x,y) is a cyclic left S-poset.
- (3) \Rightarrow (1) Suppose $A = \prod_{i \in I} A_i$ is the direct product of a non-empty family of right S-posets, each of which satisfies Condition (P'). Let $(s_i)_I x \leqslant (t_i)_I y$ and $xz \leqslant yz$ for any $(s_i)_I, (t_i)_I \in A$, $x, y, z \in S$, then $s_i a \leqslant t_i b$, $xz \leqslant yz$. Since A_i satisfies Condition (P'), implies there exist $z_i \in A_i$, $u_i, v_i \in S$ such that $s_i = z_i u_i$, $t_i = z_i v_i$ and $u_i x \leqslant v_i y$. Then $L(x,y) \neq \emptyset$, $(x,y) \in \rho_z$, by assumption there exists $(u,v) \in L(x,y)$ such that $(u_i,v_i) \in S(u,v)$, $i \in I$. Furthermore, we can derive $ux \leqslant vy$, $(u_i,v_i) = w_i(u,v)$ for some $w_i \in S$, so $(s_i)_I = (z_i w_i)_I u$, $(t_i)_I = (z_i w_i)_I v$. Therefore, A satisfies Condition (P') as required.

Here we define that a right S-poset A_S satisfies Condition (E') when, for all $a \in A_S$, $s, s', z \in S$, $as \leq as'$ and $sz \leq s'z$ imply there exist $a' \in A_S$, $u \in S$ such that a = a'u and $us \leq us'$.

Let S be a pomonoid and $P \subseteq S$ be sub-pomonoid of S. We say that P is quasi weakly left collapsible, if for any $s, s' \in S$, $z \in S$, $sz \leqslant s'z$ implies there exists $u \in P$ such that $us \leqslant us'$.

Theorem 2.16 Let S be a pomonoid. The following conditions are equivalent:

- (1) If $\Pi_{i \in I} A_i$ satisfies Condition (E'), then A_i satisfies Condition (E');
- (2) Θ_S satisfies Condition (E');
- (3) S is a quasi weakly left collapsible pomonoid.

Proof It is similar to Theorem 2.7.

Theorem 2.17 Let S be a pomonoid. The following conditions are equivalent:

(1) The direct product of every non-empty family of right S-posets satisfying Condition (E') satisfies Condition (E');

- (2) $(S^{\Gamma})_S$ satisfies Condition (E'), for any nonempty set Γ ;
- (3) For any $x, y \in S$, the set $l(x, y) := \{s \in S : sx \leq sy\}$ is either empty or else there exists $z \in S$ such that $(x, y) \in \rho_z$, then l(x, y) is a principally left ideal of S.

Proof It is similar to [13, Theorem 3.23].

Theorem 2.18 Let S be a pomonoid. The following conditions are equivalent:

- (1) If A_1, \dots, A_n satisfy Condition (E') where $n \in \mathbb{N}$, then $\prod_{i=1}^n A_i$ satisfies Condition (E');
 - (2) If A_S and B_S satisfy Condition (E'), then $(A_S \times B_S)$ satisfies Condition (E');
 - (3) The diagonal S-poset D(S) satisfies Condition (E');
- (4) For any $x, y \in S$, the set l(x, y) is either empty or else there exists $z \in S$ such that $(x, y) \in \rho_z$, then l(x, y) is weakly locally principally.

Theorem 2.19 Let $S = T^1$, where T is a left po-group. For each $i \in I$, if A_i satisfies Condition (E), then the direct product $\Pi_{i \in I} A_i$ also satisfies Condition (E).

Proof Assume that $(a_i)_I s \leqslant (a_i)_I s'$ where $(a_i) \in \Pi_{i \in I} A_i$ and $s, s' \in S$. This implies $a_i s \leqslant a_i s'$ for every $i \in I$. According to the given assumption, for each i, there exist $u_i \in S$, $a'_i \in A_i$ such that $a_i = a'_i u_i$, $u_i s \leqslant u_i s'$. Now, consider two cases. If $u_j = 1$, then $s \leqslant s'$ for some $j \in I$. Otherwise, fix an element $k \in I$. Then for any $j \in I$, $j \neq k$, there exists $x_j \in T$ such that $u_j = x_j u_k$. Let $b_k = a'_k$ and for any $j \neq k$, define $b_j = a'_j x_j$, then $(a_i)_I = (a'_i u_i)_I = (b_i)_I u_k$.

Theorem 2.20 Let $S = T^1$, where T is a left po-group. For each $i \in I$, if A_i satisfies Condition (E'), then the direct product $\Pi_{i \in I} A_i$ also satisfies Condition (E').

Proposition 2.21 Let S be any commutative pomonoid. If $\Pi_{i \in I} A_i$ satisfies Condition (P) (or Condition (P'), Condition (P_E)), then A_i also satisfy Condition (P) (or Condition (P'), Condition (P_E)).

If I is any non-empty set and S is any pomonoid, for any element $\vec{a} = (a_i)i \in I \in S^I$, we define

$$L(\vec{a}) = \{ \vec{s} \in S^I : s_i a_i \leqslant s_j a_j, \ \forall i, j \in I \},$$

and

$$l(\vec{a}) = \{ s \in S : sa_i \leqslant sa_j, \ \forall i, j \in I \}.$$

Clearly, if non-empty, $L(\vec{a})$ and $l(\vec{a})$ are a left S-subposet of S^I and a left ideal of S, respectively.

Proposition 2.22 Let S be a pomonoid such that the diagonal S-poset D(S) is projective. Then, for every non-empty set I and every $\vec{a} \in S^I$, $L(\vec{a})$ is either empty or a weakly locally cyclic S-subposet of S^I , and $l(\vec{a})$ is either empty or else a weakly locally principal left ideal of S.

Proof First, we focus on the set $L(\vec{a})$. Let $\vec{x}, \vec{y} \in L(\vec{a})$ such that $x_i a_i \leq x_k a_k$ and $y_i a_i \leq y_k a_k$ for any $i, k \in I$. We start with the following manipulation:

$$(x_i, y_i) \bowtie (x_i, y_i) \cdot 1$$
 $(x_i, y_i) a_i \bowtie (x_k, y_k) \cdot a_k$ $(x_k, y_k) \cdot 1 \bowtie (x_k, y_k).$

Consequently, all (x_k, y_k) belong to a single strongly convex connected component of D(S). Since the diagonal S-poset D(S) is projective, there exists $e^2 = e \in E(S)$ such that in the component forms (p,q)S, (p,q) is left e-pocancellative. This means, for any $u,v \in S$ such that (p,q) = (p,q)e, from $(p,q)u \leq (p,q)v$ implies $eu \leq ev$. So $(x_i,y_i) = (p,q)z_i$ for some $z_i \in S$. We need verify $e\vec{z} \in L(\vec{a})$. Furthermore, $\vec{x}, \vec{y} \in Se\vec{z}$. Note that $(p,q)z_ia_i = (x_i,y_i)a_i \leq (x_k,y_k)a_k = (p,q)z_ka_k$. We get $ez_ia_i \leq ez_ka_k$ for any $i,k \in I$ since left e-pocancellative, $e\vec{z} \in L(\vec{a})$. So $\vec{x} = p\vec{z} = pe\vec{z} \in Se\vec{z}$, $\vec{y} = q\vec{z} = qe\vec{z} \in Se\vec{z}$. Therefore $L(\vec{a})$ is weakly locally cyclic.

Now assume that $x, y \in l(\vec{a})$. Since the diagonal S-poset D(S) is projective, $(x, y) \in (p, q)S$ and (p, q) is left e-pocancellative, then (x, y) = (p, q)z = (p, q)ez, and so $(p, q)za_i = (xa_i, ya_i) \leq (xa_k, ya_k) = (p, q)za_k$. Then $x, y \in Sez$, $l(\vec{a})$ is a weakly locally principal left ideal of S.

3. Condition (P_I) , GP - (P), strongly (P)-cyclic and I-inverse of diagonal S-posets D(S)

In this section, we initially address the query regarding the circumstances under which the diagonal S-poset D(S) meets Condition (P_I) and GP - (P). Subsequently, we demonstrate the equivalent conditions for determining when the (finite) direct products of strongly (P)-cyclic S-posets are strongly (P)-cyclic. Lastly, we characterize the pomonoid S for which D(S) is I-inverse.

Let? I? denote an ideal of the pomonoid? S. A right S-poset A_S satisfies Condition (P_I) when, if $as \leqslant a's'$ for any $a, a' \in A_S$, $s, s' \in S$, then there exist $a'' \in A_S$, $u, v \in S$ such that $us \leqslant vs'$, a = a''u, a' = a''v. Now, consider that a subset $R \subseteq S$ is right I-reversible, if for any $p, q \in S$, there exist $u, v \in R \cap I$ such that $up \leqslant vq$. In particular, right I-reversible is right reversible as I=S.

Definition 3.1 Let $I \subseteq S$ is an ideal. A right S-poset A_S is said to be I-weakly locally cyclic if, for any $x, y \in A_S$, there exist $z \in A \cap I$, $s, t \in S$ such that x = sz, y = tz. In particular, I-weakly locally cyclic is weakly locally cyclic as I = S.

Definition 3.2 Let $I \subseteq S$ is an ideal. The set L(a,b) is said to be I-cyclic if, for any $x \in L(a,b)$, there exist $z \in L(a,b) \cap (I \times I)$, $s \in S$ such that x = sz. In particular, I-cyclic is cyclic as I = S.

Theorem 3.3 Let S be a pomonoid and S satisfies Condition (P_I) . The following conditions are equivalent:

- (1) If A_1, \dots, A_n satisfy Condition (P_I) where $n \in \mathbb{N}$, then $\prod_{i=1}^n A_i$ satisfies Condition (P_I) ;
 - (2) If A_S and B_S satisfy Condition (P_I) , then $(A_S \times B_S)$ satisfies Condition (P_I) ;
 - (3) The diagonal S-poset D(S) satisfies Condition (P_I) ;
 - (4) For any $a, b \in S$, the set l(a, b) is either empty or else I-weakly locally cyclic.

Proof $(1) \Rightarrow (2) \Rightarrow (3)$ It is clear.

- $(3) \Rightarrow (4)$ Assume that the diagonal S-poset D(S) satisfies Condition (P_I) . Let $(x,y), (x',y') \in L(a,b)$ with $a,b \in S$, then $xa \leqslant yb$ and $x'a \leqslant y'b$, and so we have $(x,x')a \leqslant (x,x')b \in D(S)$. Based on the given assumption, there must exist $(z,z') \in D(S)$ and $p,q \in I$ such that (x,x')=(z,z')p, (y,y')=(z,z')q and $pa \leqslant qb$. From the above equalities, we can further derive that (x,y)=(zp,zq)=z(p,q), (x',y')=(z'p,z'q)=z'(p,q) with $(p,q) \in L(a,b) \cap (I \times I)$. This clearly shows that L(a,b) is I-weakly locally cyclic.
- $(4) \Rightarrow (1)$ Suppose that A_1, \dots, A_n satisfy Condition (P_I) . Let $(a_1, \dots, a_n)u \leqslant (a'_1, \dots, a'_n)v$ in $A = \prod_{i=1}^n A_i$ for any $a_i, a'_i \in A_i$, $i \in \mathbb{N}$, $u, v \in S$. From $a_i u \leqslant a'_i v$ and Condition (P_I) , there exist $a''_i \in A_i$, $p_i, q_i \in I$ such that $a_i = a''_i p_i$, $a'_i = a''_i q_i$ and $p_i u \leqslant q_i v$. Then $(p_i, q_i) \in L(u, v)$, so by assumption, there exist $(p, q) \in L(u, v) \cap (I \times I)$, $w_i \in S$ such that $(p_i, q_i) = w_i(p, q_i)$, $i \in \mathbb{N}$. Thus, we have

$$(a_1, \dots, a_n) = (a_1'' p_1, \dots, a_n'' p_n) = (a_1'' w_1 p_1, \dots, a_n'' w_n p) = (a_1'' w_1, \dots, a_n'' w_n) p_n$$

$$(a'_1, \dots, a'_n) = (a''_1q_1, \dots, a''_nq_n) = (a''_1w_1q, \dots, a''_nw_nq) = (a''_1w_1, \dots, a''_nw_n)q,$$

and $up \leq vq \in A = \prod_{i=1}^{n} A_i$. Thus, $A = \prod_{i=1}^{n} A_i$ satisfies Condition (P_I) .

Theorem 3.4 Let S be a pomonoid and S satisfies Condition (P_I) . The following conditions are equivalent:

(1) The direct product of every non-empty family of right S-posets satisfying Condition (P_I) satisfies Condition (P_I) ;

- (2) $(S^{\Gamma})_S$ satisfies Condition (P_I) , for any nonempty set Γ ;
- (3) For any $a, b \in S$, the set L(a, b) is either empty or else I-cyclic.

Proof $(1) \Rightarrow (2)$ It is clear.

- $(2) \Rightarrow (3)$ Suppose that $a, b \in S$, $L(a, b) \neq \emptyset$ and $L(a, b) := \{(u_{\gamma}, v_{\gamma}) | \gamma \in \Gamma\}$. Let \overrightarrow{u} , \overrightarrow{v} be the elements of S^{Γ} whose γ th components are u_{γ} , v_{γ} respectively. Then $\overrightarrow{u} a \leqslant \overrightarrow{v} b$ in S^{Γ} . Since $(S^{\Gamma})_S$ satisfies Condition (P_I) , so there exist $\overrightarrow{z} \in S^{\Gamma}$, $p, q \in I$ such that $\overrightarrow{u} = \overrightarrow{z} p$, $\overrightarrow{v} = \overrightarrow{z} q$ and $pa \leqslant qb$. Thus, $(p, q) \in L(a, b) \cap (I \times I)$ so that $(p, q) = (u_j, v_j)$ for some $j \in \Gamma$. If $\gamma \in \Gamma$, then $(u_{\gamma}, v_{\gamma}) = z_{\gamma}(p, q) = z_{\gamma}(u_j, v_j)$, where z_{γ} is the γ th component of \overrightarrow{z} , Thus, L(a, b) is I-cyclic.
- $(3) \Rightarrow (1)$ Let $A = \prod_{i \in I} A_i$ is the direct product of every non-empty family of right Sposets satisfying Condition (P_I) . Suppose that $\overrightarrow{x}a \leqslant \overrightarrow{y}b$ for any $a, b \in S$, $\overrightarrow{x} = (x_i)$, $\overrightarrow{y} =$ $(y_i) \in A$. For any $i \in I$, $x_i a \leqslant y_i b$. Since A_i satisfies Condition (P_I) , so there exist $u_i, v_i \in I$, $z_i \in A_i$ such that $u_i a \leqslant v_i b$, $x_i = z_i u_i$, $y_i = z_i v_i$. And so $(u_i, v_i) \in L(a, b) \neq \emptyset$. By assumption, L(a, b) is I-cyclic, there exist $(s, t) \in L(a, b) \cap (I \times I)$, $w_i \in S$ such that $(u_i, v_i) = w_i(s, t)$. Thus, we have

$$(x_i)_I = (z_i u_i)_I = (z_i w_i s)_I = (z_i w_i)_I s,$$

 $(y_i)_I = (z_i v_i)_I = (z_i w_i)_I t,$

and $sa \leq tb \in A$. Therefore, $A = \prod_{i \in I} A_i$ satisfies Condition (P_I) .

Definition 3.5 A right S-poset A_S satisfies Condition GP - (P), if $as \leq a's$ for any $a, a' \in A_S$, $s \in S$, then there exist $n \in \mathbb{N}$, $a'' \in A_S$, $u, v \in S$ such that a = a''u, a' = a''v and $us^n \leq vs^n$.

We define the set $L(s^n, s^n) := \{(u, v) \in D(S) | us^n \leq vs^n\}$ for any $n \in \mathbb{N}$. Obviously, $L(s^n, s^n)$ is a left S-poset. The following Theorem gives the characterization while the diagonal S-poset D(S) satisfies Condition GP - (P).

Theorem 3.6 Let S be a pomonoid. The following conditions are equivalent:

- (1) The diagonal S-poset D(S) satisfies Condition GP (P);
- (2) For any $s \in S$, the set L(s,s) is either empty or else satisfies the Condition:

for any $(u,v),(u',v') \in L(s,s)$, there exist $n \in \mathbb{N}$, $(p,q) \in L(s^n,s^n)$ such that $(u,v),(u',v') \in S(p,q)$.

- Proof $(1) \Rightarrow (2)$ Suppose that the diagonal S-poset D(S) satisfies Condition GP (P). Let for any $(u, v), (u', v') \in S(p, q), s \in S$. Then $us \leqslant vs, u's \leqslant v's$. It follows that $(u, u')s \leqslant (v, v')s$. By assumption, there exist $n \in \mathbb{N}$, $(w, w') \in D(S)$, $p, q \in S$ such that (u, u') = (w, w')p, (v, v') = (w, w')q and $ps^n \leqslant qs^n$, so we obtain $(u, v), (u', v') \in S(p, q)$ and $(p, q) \in L(s^n, s^n)$ as required.
- $(2) \Rightarrow (1)$ Suppose that $(a,b), (a',b') \in D(S), s \in S$ such that $(a,b)s \leqslant (a',b')s$. Then we have $as \leqslant a's, bs \leqslant b's$. Thus, $(a,a'), (b,b') \in L(s,s) \neq \emptyset$. By assumption, there exist $n \in \mathbb{N}$, $(p,q) \in L(s^n,s^n)$ such that $(a,a'), (b,b') \in S(p,q)$. Then (a,a') = w(p,q),

(b,b')=w'(p,q) and $ps^n \leqslant qs^n$ for some $w,w' \in S$. Therefore, we get (a,b)=(w,w')p, (a',b')=(w,w')q. So the diagonal S-poset D(S) satisfies Condition GP-(P).

Theorem 3.7 Let S be a pomonoid. The following conditions are equivalent:

- (1) $(S^{\Gamma})_S$ satisfies Condition GP (P) for any nonempty set Γ ;
- (2) For any $s \in S$, the set L(s,s) is either empty or else there exist $n \in \mathbb{N}$, $(p,q) \in L(s^n, s^n)$ such that $L(s,s) \subseteq S(p,q)$.

Proof $(1) \Rightarrow (2)$ Let $s \in S$, $L(s,s) \neq \emptyset$ and $L(s,s) = \{(u_{\gamma}, v_{\gamma}) | \gamma \in \Gamma\}$. Suppose that \overrightarrow{u} , \overrightarrow{v} are elements of S^{Γ} whose γ th components are u_{γ}, v_{γ} , respectively. Then $\overrightarrow{u}s \leqslant \overrightarrow{v}s$ in S^{Γ} . By assumption, $(S^{\Gamma})_S$ satisfies Condition GP - (P), there exist $n \in \mathbb{N}$, $\overrightarrow{z} \in S^{\Gamma}$, $p, q \in S$ such that $\overrightarrow{u} = \overrightarrow{z}p$, $\overrightarrow{v} = \overrightarrow{z}q$ and $ps^n \leqslant qs^n$. Thus, $(p,q) \in L(s^n, s^n)$. Suppose $\overrightarrow{z} = (z_{\gamma})_{\gamma \in \Gamma}$, then we have $u_{\gamma} = z_{\gamma}p$, $v_{\gamma} = z_{\gamma}q$ for any $\gamma \in \Gamma$. Therefore $(u_{\gamma}, v_{\gamma}) = z_{\gamma}(p,q)$ for any $\gamma \in \Gamma$, it is follows that $L(s,s) \subseteq S(p,q)$.

(2) \Rightarrow (1) Suppose that $\overrightarrow{u}s \leqslant \overrightarrow{v}s$ for $\overrightarrow{u}, \overrightarrow{v} \in S^{\Gamma}$, $s \in S$. Let $\overrightarrow{u} = (u_{\gamma})_{\gamma \in \Gamma}$, $\overrightarrow{v} = (v_{\gamma})_{\gamma \in \Gamma}$, then $u_{\gamma}s \leqslant v_{\gamma}s$ for any $\gamma \in \Gamma$, so $(u_{\gamma}, v_{\gamma}) \in L(s, s) \neq \emptyset$. By assumption, there exist $n \in \mathbb{N}$, $(p,q) \in L(s^n, s^n)$ such that $L(s,s) \subseteq S(p,q)$. Thus, for any $\gamma \in \Gamma$, there exists $w_{\gamma} \in S$ such that $(u_{\gamma}, v_{\gamma}) = w_{\gamma}(p,q)$. Put $\overrightarrow{w} = (w_{\gamma})_{\gamma \in \Gamma}$. Then we have $\overrightarrow{u} = \overrightarrow{w}p$, $\overrightarrow{v} = \overrightarrow{w}q$ and $ps^n \leqslant qs^n$, so $(S^{\Gamma})_S$ satisfies Condition GP - (P).

Recall that a pomonoid S is a right PCP pomonoid, if all right principally ideal of S satisfy Condition (P). A right S-poset A_S is strongly (P)-cyclic, if for any $a \in A_S$, there exists $z \in S$ such that $\overrightarrow{ker}\lambda_a = \overrightarrow{ker}\lambda_z$ and zS satisfies Condition (P).

Theorem 3.8 The diagonal S-poset D(S) is strongly (P)-cyclic if and only if the following conditions hold:

- (1) S is a right PCP pomonoid;
- (2) $L = \{\overrightarrow{ker}\lambda_z|zS \text{ satisfies Condition } (P)\} \cup \{S \times S\} \text{ is a sub-pomonoid of } T = (ConS_S, \cap).$

Proof Necessity. Take $s \in S$. Then by assumption there exists $z \in S$ such that $\overrightarrow{ker}\lambda_s = \overrightarrow{ker}\lambda_{(s,s)}\overrightarrow{ker}\lambda_z$ and zS satisfies Condition (P). Thus, S is a right PCP pomonoid. On the other hand, Suppose that z_1S and z_2S satisfy Condition (P) for any $z_1, z_2 \in S$. Then there exists $z \in S$ such that

$$\overrightarrow{ker}\lambda_{z_1}\cap\overrightarrow{ker}\lambda_{z_2}=\overrightarrow{ker}\lambda_{(z_1,z_2)}=\overrightarrow{ker}\lambda_z$$

and zS satisfies Condition (P).

Sufficiency. Let $(s,t) \in D(S)$. Since S is a right PCP pomonoid, then sS and tS satisfy Condition (P). Then by assumption there exists $z \in S$ such that $\overrightarrow{ker}\lambda_s \cap \overrightarrow{ker}\lambda_t = \overrightarrow{ker}\lambda_z$ and zS satisfies Condition (P). From $\overrightarrow{ker}\lambda_{(s,t)} = \overrightarrow{ker}\lambda_s \cap \overrightarrow{ker}\lambda_t = \overrightarrow{ker}\lambda_z$, then the diagonal S-poset D(S) is strongly (P)-cyclic.

Theorem 3.9 Let S be a right PCP pomonoid. The following conditions are equivalent:

- (1) The finite product of strongly (P)-cyclic S-posets is strongly (P)-cyclic;
- (2) S^n is strongly (P)-cyclic, for any $n \in \mathbb{N}$;

- (3) The diagonal S-poset D(S) is strongly (P)-cyclic.
- *Proof* $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are clear.
- $(3) \Rightarrow (1)$ Suppose that A_S and B_S are strongly (P)-cyclic. Let $(a,b) \in A \times B$. Then there exist $z_1, z_2 \in S$ such that $\overrightarrow{ker}\lambda_a = \overrightarrow{ker}\lambda_{z_1}$, $\overrightarrow{ker}\lambda_b = \overrightarrow{ker}\lambda_{z_2}$, z_1S and z_2S satisfy Condition (P). By Theorem 3.8, z_1S satisfies Condition (P) for some z_1S and

$$\overrightarrow{ker}\lambda_{(a,b)} = \overrightarrow{ker}\lambda_a \cap \overrightarrow{ker}\lambda_b = \overrightarrow{ker}\lambda_{z_1} \cap \overrightarrow{ker}\lambda_{z_2} = \overrightarrow{ker}\lambda_z.$$

Thus, $(A_S \times B_S)$ is strongly (P)-cyclic. Finally, we use induction to obtain conclusion. \square

Theorem 3.10 Let S be a right PCP pomonoid. The following conditions are equivalent:

- (1) The direct product of non-empty family of strongly (P)-cyclic S-posets is strongly (P)-cyclic;
 - (2) $(S^{\Gamma})_S$ is strongly (P)-cyclic, for any non-empty Γ ;
- (3) For any family of $\{z_i|z_iS \text{ satisfies } Condition\ (P)\}$, there exists $z \in S$ such that zS satisfies Condition (P) and $\bigcap_{i \in I} \overrightarrow{ker} \lambda_{z_i} = \overrightarrow{ker} \lambda_z$.

Since [18] introduced the definition of I-regular S-posets. Let A be an S-poset, an element $a \in A$ is called I-regular if there exists an S-morphism $f : aS \to S$ such that af(a) = a. An S-poset A is called I-regular if all elements of A are I-regular.

Definition 3.11 Let A be an S-poset. an element $a \in A$ is called I-inverse if there exists a unique S-morphism $f: aS \to S$ such that af(a) = a. An S-poset A is called I-inverse if all elements of A are I-inverse.

Proposition 3.12 Let A be an S-poset and $a \in A$. Then the following statements are equivalent:

- (1) a is I-inverse;
- (2) There exists an unique element $e \in E(S)$ such that a = ae and $ap \leq aq$ implies $ep \leq eq$ for $p, q \in S$.
- Proof (1) \Rightarrow (2) Let a is an I-inverse element of A, then a is an I-regular element. It satisfies condition (2) of [18, Proposition 4.2]. Suppose that there exists an idempotent $h \neq e$ such that a = ah, and for any $p, q \in S$, from $ap \leqslant aq$ implies $hp \leqslant hq$. We define a map $g: aS \to S$ by g(as) = hs. Clearly g is well done and a right S-morphism. But then g(a) = h, ag(a) = a. This contradicts the I-inverse element.
- $(2) \Rightarrow (1)$ Define a map $f: aS \to S$ by $f(as) = es, s \in S$. It is easy to see f is a morphism and af(a) = a. Suppose that another morphism $g: aS \to S$ by ag(a) = a. Put g(a) = h, by assumption $h \neq e$. Then a = ah by [18, Proposition 4.2], for $p, q \in S$, $ap \leqslant aq$ implies $hp \leqslant hq$, it contradicts with (2).

Definition 3.13 A pomonoid S is said to be right UPP pomonoid if for any $s \in S$, there exists a unique idempotent $e \in E(S)$ such that s = se, and from $sx \leq sy$ implies $ex \leq ey$ for $x, y \in S$.

It is known that A_S is I-inverse if and only if for every $a \in A$ there exists a unique idempotent $e \in S$ such that $\overrightarrow{ker}\lambda_a = \overrightarrow{ker}\lambda_e$. A pomonoid S is a right UPP pomonoid if and only if for each $s \in S$, $\overrightarrow{ker}\lambda_s = \overrightarrow{ker}\lambda_e$ for a unique idempotent $e \in S$.

The next theorem gives a characterization of pomonoids over which D(S) is *I*-inverse.

Theorem 3.14 Let S be a pomonoid. The diagonal S-poset D(S) is I-inverse if and only if:

- (1) S is right UPP; (2) The set $R = \{\overrightarrow{ker}\lambda_e | e \in E(S)\} \cup \{S \times S\}$ is a subpomonoid of $T = (ConS_S, \cap)$.

Proof Necessity. Take $s \in S$. Since the diagonal S-poset D(S) is I-inverse, $\overrightarrow{ker}\lambda_s =$ $\overrightarrow{ker}\lambda_{(s,s)} = \overrightarrow{ker}\lambda_e$ for a unique idempotent $e \in S$. Thus S is right UPP pomonoid. On the other hand, by assumption for each pair of idempotents $e, f \in S$ such that $\overrightarrow{ker}\lambda_e \cap \overrightarrow{ker}\lambda_f =$ $\overrightarrow{ker}\lambda_{(e,f)}$. There exists a unique idempotent $h \in S$ such that $\overrightarrow{ker}\lambda_{(e,f)} = \overrightarrow{ker}\lambda_h$ from Iinverse which completes the proof of necessity.

Sufficiency. Let $(s,t) \in D(S)$ for $s,t \in S$. So there exists a unique idempotent $e \in E(S)$ such that $\overrightarrow{ker}\lambda_s = \overrightarrow{ker}\lambda_e$ and there exists a unique idempotent $f \in E(S)$ such that $\overrightarrow{ker}\lambda_t = \overrightarrow{ker}\lambda_f$. Since R is a subpomonoid of T, there exits an idempotent $h \in S$ such that $\overrightarrow{ker}\lambda_e \cap \overrightarrow{ker}\lambda_f = \overrightarrow{ker}\lambda_{(e,f)} = \overrightarrow{ker}\lambda_h$. By assumption, S is right UPP, $\overrightarrow{ker}\lambda_h = \overrightarrow{ker}\lambda_g$ for a unique idempotent $q \in E(S)$. Thus

$$\overrightarrow{ker}\lambda_{(s,t)} = \overrightarrow{ker}\lambda_s \cap \overrightarrow{ker}\lambda_t = \overrightarrow{ker}\lambda_e \cap \overrightarrow{ker}\lambda_f = \overrightarrow{ker}\lambda_{(e,f)} = \overrightarrow{ker}\lambda_h = \overrightarrow{ker}\lambda_g.$$

Therefore, the diagonal S-poset D(S) is I-inverse.

REFERENCES

- [1] Bulman-Fleming, S., Gilmour, A., Flatness properties of diagonal acts over monoids, Semigroup Forum. 79(2009), 298-314.
- [2] Bulman-Fleming, S., Gutermuth, D., Gilmour, A., Kilp, M., Flatness properties of S-posets, Comm. Algebra. 34(2006), 1291-1317.
- [3] Bulman-Fleming, S., Laan, V., Lazard's theorem for S-posets, Math. Nachr. 278(2005), 1743-1755.
- [4] Bulman-Fleming, S., Mahmoudi, M., The category of S-posets, Semigroup Forum. 71(2005), 443-461.
- [5] Ershad, M., Sedaghatjoo, M., On a conjecture of Bulman-Fleming and Gilmour, Semigroup Forum. 82(2011), 542-546.
- [6] Fakhruddin, S. M., Absolute flatness and amalgams in pomonoids, Semigroup Forum. 33(1986), 15-22.

- [7] Fakhruddin, S. M., On the category of S-posets, Acta Sci. Math. (Szeged). 52(1988), 85-92.
- [8] Golchin, A., Rezaei, P., Subpullbacks and Flatness properties of S-posets, Comm. Algebra. 37(2009), 1995-2007.
- [9] Gould, V., Shaheen, L., Perfection for pomonoids, Semigroup Forum. 81(2010), 102-127.
- [10] Howie, M., Fundamentals of semigroup theory, Oxford Science Publications: Oxford. 1995.
- [11] Kilp, M., Knauer, U., Mikhalev, A., Monoids, Acts and Categories: with Applications to Wreath Products and Graphs. New York: Walter de Gruyter. 2000.
- [12] Khosravi, R., On direct products of S-posets satisfying flatness properties, Turkish J. Math. 38(2014), 79-86.
- [13] Leila, N., Golchin, A., Mohammadzadeh, H., On properties of product acts over monoids, Comm. Algebra. 43(2015), 1854-1876.
- [14] Miller, C., Generators and presentations for direct and wreath products of monoid acts, Semigroup Forum. 100(2020), 315-338.
- [15] Sedaghatjoo, M., Laan, V., Ershad, M., Principal weak flatness and regularity of diagonal acts, Comm. Algebra. 40(2012), 4019-4030.
- [16] Shi, X. P., Strongly flat and po-flat S-poset, Comm. Algebra. 33(2005), 4515-4531.
- [17] Shi, X. P., On flatness properties of cyclic S-posets, Semigroup Forum. 77(2008), 248-266.
- [18] Shi, X. P., Liu, Z. K., Wang, F. G., Bulman-Fleming, S., Indecomposable, projective and flat S-posets, Comm. Algebra. 33(2005), 235-251.
- [19] Xie, X. Y., Shi, X. P., Order-congruences on S-posets, Commun. Korean Math. Soc. 20(2005), 1-14.
- [20] Zhao, T. T., Qiao, H. S., Zhang, X., On weakly pullback flat S-posets, J. Algebra Appl. doi:10.1142/s021949882550238X.