
Coupling between the layout pattern of green space and the function of
urban wetland biomes in the context of urbanisation

Abstract: Accelerated global urbanisation has led to a sharp decrease in the area of natural wetlands and
degradation of biological functions, and the morphological heterogeneity of urban green space layout
has become a key variable affecting the sustainability of wetland ecological services. Based on the
multi-source data fusion of satellite remote sensing (Landsat-8, Sentinel-2), biometric sensor network
(infrared camera, acoustic recorder, eDNA) and microclimate hydrological monitoring, we constructed a
machine learning-driven coupled model of morphology-function, and analyzed the nonlinear response
mechanism of the green space layout parameters and wetland biological communities. We constructed a
machine learning-driven 'form-function' coupled model to analyse the nonlinear response mechanism
between green space layout parameters and wetland biological communities. Empirical evidence shows
that the density of green space patches in the core area (27.4 patches/km²) is 3.4 times higher than that
in the suburban area, but the connectivity index (0.15) is less than 1/4 of that in the suburban area, which
leads to a 58% reduction of heron nesting area; the insect diversity in the area of nighttime light
intensity >50 lux decreases by 63%, and the 'ecological blind zone' revealed by the sensor data accounts
for The 'ecological blind zone' revealed by sensor data accounted for 78% of the built-up area-wetland
interface zone. The prediction accuracy of the random forest model (R²=0.83) was significantly better
than that of the traditional method, and the connectivity index (32.7% contribution) and water proximity
(28.5%) were identified as the key driving factors. The study proposes a 'multi-centre + corridor'
resilience planning framework, which improves the success rate of biotic migration by 57% and delays
the peak of stormwater runoff by 0.8 hours through the implantation of 1-3 ha greenbelt nodes and 30-
metre ecological corridors. The results provide dynamic assessment tools and spatial intervention targets
for ecological restoration in high-density cities, and promote the transformation of urban planning from
form-fitting to process synergy.

Keywords: Urban Wetland Biocommunity Function, Green Space Configuration, Urbanization
Ecological Effects, Biometric Monitoring Technology, Ecological Function Coupling Model.

I. INTRODUCTION
With the acceleration of global urbanisation, urban wetlands, as a scarce ecological resource in high-

density built-up areas, are facing serious challenges such as habitat fragmentation and plummeting
biodiversity. For example, in mega urban agglomerations such as the Yangtze River Delta and the Pearl
River Delta in China, more than 60% of natural wetlands have been converted into construction land or
artificial waters in the past 20 years, and the average area of the remaining wetland patches has shrunk to
less than 30% of the original size, which has led to the decline of more than 50% in the population size of
benthic fauna, migratory waterbirds, and other key species [1-2]. At the same time, the urban green space
layout shows a significant 'centre-edge' differentiation: the core urban area is dominated by scattered
small green spaces with less than 15% vegetation coverage, while the suburban wetland parks have an
ecological base, but they are cut off from the urban functional blocks, making it difficult to form an
effective ecological service network. Existing studies have shown that the maintenance of wetland
biological community functions (e.g. carbon and nitrogen cycling, pollutant degradation) is highly
dependent on the structural connectivity of the green space. The dispersal radius of indicator species, such
as dragonflies, is limited by the vegetation cover corridor within 300 metres, while the reproductive
success of amphibians is positively correlated with the connectivity of water bodies within the 500-metre
buffer zone [3-5]. However, traditional planning mostly focuses on static indicators such as green space
rate, ignoring the dynamic coupling mechanism between spatial form and biological behaviour. The
current monitoring of wetland ecological processes still relies on manual sampling with low spatial and
temporal resolution, which makes it difficult to capture sudden ecological threshold mutations in the
process of urbanisation in a timely manner [6]. The study aims to analyse the green space pattern and



wetland biological function response mechanism supported by high-precision biometrics, and to construct
a spatial optimization decision-making framework by integrating multi-source remote sensing data,
biosensor networks and machine learning models. For the first time, the study applies biometrics
technologies, such as bird voiceprint recognition and insect tracking, to wetland ecological diagnosis,
breaking through the bottleneck of data granularity in traditional monitoring, and providing quantifiable
dynamic assessment tools for smart city ecological planning.

II. RESEARCHMETHODOLOGY AND TECHNICAL FRAMEWORK

A. Multi-source data collection and processing
By integrating three types of heterogeneous data, namely satellite remote sensing, biometric sensor

network and microclimate and hydrological monitoring of urban wetlands, the study constructs a
multidimensional data collection and analysis framework to support the study of the coupling
mechanism between green space layout patterns and wetland biomes. Satellite remote sensing data are
dominated by Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI)
imagery, covering the time-series imagery of the study area from 2015 to 2023. The radiometric
correction was used to eliminate the effect of atmospheric scattering, and the Random Forest (RF)
algorithm was used to classify the Land Use and Land Cover (LULC), which classified the land surface
into six categories, namely, building land, roads, tree woodland, shrub grassland, water bodies and bare
land, and the classification accuracy was verified to be 89.3% by the field sampling. In response to the
dynamic change characteristics of the wetland water body boundary, the Normalised Difference Water
Index (NDWI) was introduced, and the seasonal inundation area range was extracted by the sliding
window method, with the temporal resolution increased to 8 days, and the spatial resolution reached 30
m (Landsat-8) and 10 m (Sentinel-2), respectively. The spatial resolution reached 30 m (Landsat-8) and
10 m (Sentinel-2) respectively. The technical parameters of the remote sensing data cover sensor type,
spatial and temporal resolution, core processing algorithms and data usage, which provide the basis for
the subsequent landscape pattern analysis. The technical parameters and processing flow of satellite
remote sensing data are shown in Table 1.

TABLE I. SATELLITE REMOTE SENSING DATA TECHNICAL PARAMETERS AND PROCESSINGWORKFLOW

Data Type Data
Source

Spatial
Resolution

Temporal
Resolution

Core Processing
Algorithm Data Application

Multispectral
Imagery

Landsat-8
OLI 30 meters 16 days Random Forest

Classification
Land Use

Classification
High-Resolution

Imagery
Sentinel-2

MSI 10 meters 5 days NDWI Time Series
Analysis

Wetland Water
Dynamics Monitoring

Thermal
Infrared Data

Landsat-8
TIRS 100 meters 16 days Land Surface

Temperature Retrieval
Urban Heat Island
Effect Assessment

Radar Data Sentinel-1
C-SAR 20 meters 12 days Interferometric Synthetic

Aperture Radar (InSAR)
Surface Deformation

Monitoring

Elevation Data ALOS
World 3D 30 meters Static Digital Elevation Model

Generation

Terrain Slope and
Watershed
Delineation

Nighttime Light
Data

Suomi NPP
VIIRS 500 meters Daily Radiometric Calibration

and Denoising

Human Activity
Intensity

Quantification
The biometric sensor network was deployed using a stratified sampling strategy, with 32 fixed

monitoring nodes in the wetland core area, transition zone and urban greenfield edge zone. Each node
integrates an infrared camera (Bushnell Aggressor series), a broadband acoustic recorder (Wildlife



Acoustics SM4) and an environmental DNA (eDNA) sampling device to synchronise the capture of
species diversity, activity trajectories and genetic information. The infrared camera operates in passive
infrared triggering mode with a time interval of 5 minutes and an effective detection range of 30 m,
recording the diurnal rhythms of mammals, birds and amphibians; the acoustic recorder with a sampling
rate of 48 kHz continuously captures the wing beating of insects, bird calls and frog courtship vocal
patterns [7-8]; the eDNA sampling is performed through a filter membrane (0.45 μm aperture) that
enriches the exfoliated cells of the water column, combined with macro barcoding technology (0.45μm)
and a micro barcoding technology (0.45 μm pore size) that allows for simultaneous capture of species
diversity and genetic information. The eDNA samples were collected by filter membrane (0.45μm pore
size) to enrich the detached cells in the water column, and then combined with macro-barcoding
technology (COI gene fragment amplification) to analyse the composition of zooplankton and benthos.
After denoising and feature extraction, a Convolutional Neural Network (CNN) was used for automatic
species identification. The model training set covered 12,800 acoustic samples and 9,450 infrared
images from East Asia, with a cross-validation accuracy of 92.1%. The biometric sensor network
deployment scheme, as shown in Table 2.

TABLE II. BIOSENSOR NETWORK DEPLOYMENT PLAN

Monitoring
Level Sensor Type

Deployment
Density

(units/km²)

Core Monitoring
Objective

Data Fusion
Strategy

Spatial
Coverage
Range

Wetland
Core Area

Infrared Camera,
eDNA Sampler 4.2

Waterbird Habitats,
Benthic Community

Structure

Spatial Hotspot
Clustering
Analysis

50-meter
Radius

Buffer Zone

Transition
Zone

Acoustic Recorder,
Micro Weather Station 3.8

Insect Pollination
Paths, Amphibian

Migration

Time Series
Cross-

Correlation

100-meter
Belt Area

Urban
Fringe Zone

Multi-Parameter Water
Quality Sensor,
Anemometer

2.5

Non-Point Source
Pollution Input,
Wetland-Urban
Interaction

Gradient
Diffusion
Model
Coupling

0-200 meters
from Urban
Boundary

Vegetation
Corridor

Photosynthetically
Active Radiation
(PAR) Sensor

1.2
Canopy Light
Transmittance,
Microclimate

Spatial
Interpolation
Integration

±10 meters
from

Corridor
Axis

Water
Surface
Layer

Plankton Sampler 0.8
Zooplankton
Density, Algal

Biomass

Vertical Profile
Data

Integration

0-0.5 meters
Below Water
Surface

Wetland
Bottom
Layer

Sediment Oxygen
Probe 0.6

Benthic Habitat
Environmental

Quality

Time Lag
Effect Analysis

0-10 cm
Below

Sediment
Surface

Urban wetland microclimate and hydrological data are collected in real time through distributed
IoT nodes, covering 14 parameters such as air temperature, relative humidity, wind speed, light intensity,
water pH, dissolved oxygen (DO), conductivity and turbidity. The meteorological station (HOBO U30
series) was installed at a height of 1.5 metres from the ground, and the recording interval was set at 10
minutes to avoid the influence of vegetation shading on the integrity of the data; hydrological sensors
(YSI EXO2 multi-parameter water quality meter) were deployed in the surface layer (0.5 metres in depth)
and the bottom layer (1.2 metres in depth) of the wetland water body to monitor the change of vertical
gradient simultaneously. The data were pre-processed using a sliding average method to eliminate
transient noise and Kriging Interpolation to generate a spatially continuous field. For equipment drift



errors, on-site calibration was performed once a month, using standard buffers (pH 4.01, 7.00, 10.01) to
calibrate the pH probe, and the conductivity meter calibrant covering the range of 0-100 mS/cm, to
ensure that the measurement error was controlled within±2%.

Spatio-temporal alignment of multi-source data is a key technical aspect of this study. Firstly, based
on the unified geographic coordinate system (WGS84 UTM Zone 50N), the spatial alignment of remote
sensing images, sensor points and microclimate raster data was carried out using the ArcGIS platform,
and the maximum residuals were controlled within 0.5 image elements. Secondly, Dynamic Time
Warping (DTW) algorithm was used to match the data streams with different sampling frequencies, for
example, to synchronise the minute-level meteorological data with the hourly biological activity records.
Finally, we extracted the correlation characteristics between green spatial morphological indices (e.g.,
patch density, edge curvature, landscape connectivity) and biofunctional indices (e.g., species richness,
trophic energy flow) by dimensionality reduction through Principal Component Analysis (PCA), which
provided input variables for the construction of the subsequent coupled model.
B. Quantitative Modelling of Green Space Layout Patterns

The quantification of green spatial layout should take into account both static structure and dynamic
functional characteristics. In this study, the synergistic framework of landscape pattern index and spatial
syntax analysis is used to construct a multi-scale evaluation system, which covers the geometric
characteristics of patches, spatial topological relationships, and the effects of anthropogenic disturbances,
and provides quantifiable morphology parameters for the subsequent coupled model.

The landscape pattern indices were selected based on the ecological process response mechanism,
including Patch Density (PD), Edge Density (ED), Aggregation Index (AI), Connectivity Index
(CONNECT), Shannon's Diversity Index (Shannon's Diversity Index) and the Shannon's Diversity Index
(Shannon's Diversity Index). Index (SHDI) and Water Proximity (WP). Patch density reflects the degree
of green space fragmentation and is defined as the number of independent patches per square kilometre;
the connectivity index is calculated by weighting the minimum Euclidean distance between patches and
characterises the potential path resistance of species migration. For the ecological characteristics of
wetlands, the spatial interaction effect between water body proximity metrics and wetlands was
calculated using a Gaussian decay function to simulate the pattern of biological dispersal over distance,
and the radius of decay was set to 500 m to match the activity range of amphibians. The landscape
pattern index system and ecological interpretation, as shown in Table 3.

TABLE III. LANDSCAPE PATTERN INDEX SYSTEM AND ECOLOGICAL INTERPRETATION

Index Name Abbreviation Spatial
Scale

Ecological
Significance Data Source Calculation

Software
Sensitivity
Threshold

Patch
Density PD Patch

Level

Fragmentation
Degree

Assessment

Sentinel-2
Classification

Results
Fragstats 4.2

PD > 15
patches/km²
indicates high
fragmentation

Edge Density ED Patch
Level

Habitat Boundary
Effect Intensity

Land Use
Vector Data ArcGIS 10.8

ED > 120 m/ha
indicates strong

edge
disturbance

Aggregation
Index AI Landscape

Level

Spatial
Aggregation
Quantification

Landscape
Pattern Raster GuidosToolbox

AI < 40%
indicates
discrete

distribution

Connectivity
Index CONNECT Landscape

Level

Species
Migration Path
Accessibility

Least-Cost
Path Model

Conefor
Sensinode

CONNECT <
0.3 indicates

low
connectivity



Index Name Abbreviation Spatial
Scale

Ecological
Significance Data Source Calculation

Software
Sensitivity
Threshold

Shannon
Diversity
Index

SHDI Landscape
Level

Spatial
Heterogeneity
Characterization

Multispectral
Image

Classification
ENVI 5.3

SHDI > 1.5
indicates high
heterogeneity

Water
Proximity WP Patch

Level

Wetland-Green
Space Interaction

Effect

Wetland
Boundary
Buffer
Analysis

QGIS 3.22

WP < 200 m
indicates strong
association

zone
Space Syntax Analysis (SSA) focuses on the assessment of service effectiveness of green space,

and analyses the accessibility and ecological radiation capacity from the perspective of topological
network [9-10]. Based on the urban road network and green space entrance data, a dual network model
was constructed at the pedestrian scale (500 m radius) and ecological scale (2000 m radius), and the
Normalised Depth Value (NDV), Weighted Integration (WINT) and Ecological Service Radius (ESR)
were calculated. Ecological Service Radius (ESR). Normalised Depth Value (NDV) reflects the
topological accessibility of nodes in the network, and is normalised to eliminate scale effects; Weighted
Integration (WINT) incorporates pedestrian density data to quantify the centrality of green spaces in
urban activities. The ecological service radius is solved by coupling the noise attenuation model with 3D
visual field analysis, with constraints including safe flight height for birds (>15 m) and human noise
interference threshold (<55 dB). Spatial syntactic analysis parameters and functions were defined, as
shown in Table 4.

TABLE IV. SPACE SYNTAX ANALYSIS PARAMETERS AND FUNCTIONAL DEFINITIONS

Parameter
Name Abbreviation Spatial Scale Functional

Definition Data Source Calculation
Tool

Core
Constraints

Normalized
Depth Value NDV

Community
Level (500

m)

Topological
Accessibility
Assessment

Road
Network
Topology
Model

Depthmap X Walking Speed
≤ 1.2 m/s

Weighted
Integration WINT City Level

(2000 m)

Spatial
Centrality

Quantification

Mobile
Signaling
Heatmap

Axwoman 9.0
Population

Density Weight
Calibration

Ecological
Service
Radius

ESR Regional
Level (5 km)

Ecological
Radiation Range

Definition

3D Terrain
Model

ArcGIS 3D
Analyst

Noise < 55 dB,
Flight Height ≥

15 m

Visual Graph
Analysis VGA Patch Level

Visual
Permeability

Effect
Assessment

LiDAR Point
Cloud Data

Viewshed
Analysis
Module

Viewpoint
Height 1.5 m,
View Angle

120°

Topological
Penetration TPA

Road
Network
Level

Path Usage
Efficiency

Quantification

Traffic Flow
Monitoring

Data
sDNA Plugin

Path
Flow/Length

Ratio
3D Green
Volume
Index

3DGI
Building
Cluster
Level

3D Ecological
Capacity

Measurement

Airborne
LiDAR CloudCompare

Point Cloud
Density ≥ 8
points/m²

The computation of spatial syntactic parameters relies on topological network modelling and
physical environment constraints. As an example, the normalised depth value is calculated based on the
number of shortest path steps between network nodes, and the elimination of quantitative differences
needs to be shown in equation (1).



/( )NDV DV    (1)
In equation (1),  and  are the mean and standard deviation of the depth values, respectively.

The weighted integration degree, on the other hand, introduces the logarithmic transformed value of
crowd density as a weighting factor, as shown in Equation (2).

)l (og dWINT INT P  (2)

In Eq. (2), dP is the value of population density based on the inversion of mobile phone signalling
data. The calculation of the ecological service radius needs to be coupled with the acoustic attenuation
model as shown in equation (3), which can be analysed with the 3D buffer zone of flight height.

)0 2(/) 0(10 L Lt
noiseD  (3)

In equation (3), 0L is the noise source intensity, Lt is the target threshold, and  is the
atmospheric absorption coefficient.

In the model construction, the fusion of landscape pattern indices and spatial syntactic parameters is
achieved through spatial superposition and machine learning. For example, the spatial coupling of patch
density (PD) and weighted integration (WINT) can identify highly fragmented-low accessibility areas;
the interaction of water body proximity (WP) and ecological service radius (ESR) can quantify the
functional synergistic effects of wetlands and green spaces [11-12]. The XGBoost algorithm was used to
filter 10 sensitivity indicators from 32 initial parameters, including aggregation index (AI), three-
dimensional green volume index (3DGI) and normalised depth value (NDV), to ensure the streamlining
and explanatory power of the model input variables.

The model validation adopted a spatial cross-validation strategy by dividing the study area into 1km
×1km grid cells, randomly selecting 70% of the cells as the training set and the remaining 30% as the
test set. The prediction accuracy was assessed by root mean square error (RMSE) and coefficient of
determination (R2) to ensure the generalisation ability of the model in heterogeneous regions.

C. Biome function assessment system
The assessment of biotope function needs to take into account the ecological roles and ecosystem

service values of species functional groups. In this study, we constructed a multi-dimensional
assessment framework through the quantitative model of species classification and ecological processes
driven by biometrics technology. The system breaks through the limitations of traditional biomass or
diversity indicators, and analyses the comprehensive effectiveness of wetland biomes from the dual
perspectives of dynamic interactions of functional groups and spatial heterogeneity of ecological
services.

Based on the ecological niche theory and the morphological characteristics, behavioural patterns
and trophic relationships of species, the biotope of wetland biotopes is divided into Pollinator,
Decomposer, Seed Disperser and Primary Producer, Predator and Ecosystem Engineer [13-15]. The
definition of the functional groups relies on multiple sources of biometric data: infrared cameras to
capture feeding behaviour of mammals and birds, acoustic recorders to analyse the correlation between
insect wing beat frequency and plant pollination, and environmental DNA (eDNA) macro-barcoding to
identify the trophic status of benthic organisms. For example, the pollinator functional group includes
bees, butterflies and some beetles, whose activity trajectories are tracked by Radio Frequency
Identification (RFID) tags and pollination efficiency is quantified in relation to the amount of pollen
attached; the decomposer functional group includes oligochaetes, nematodes and fungi, and the rate of
organic matter degradation is assessed by metabolite spectroscopy (e.g., chitinase activity) [16-17]. The
decomposer functional group covers oligochaetes and nematodes as well as fungi. The classification
system and monitoring methods of wetland biofunctional groups are shown in Table 5.

TABLE V. WETLAND BIOLOGICAL FUNCTIONAL GROUP CLASSIFICATION SYSTEM ANDMONITORING
METHODS



Functional
Group Name

Representative
Species

Biomonitoring
Technology

Functional
Contribution
Indicators

Ecological
Service Type

Data
Collection
Equipment

Spatial
Resolution

Pollinators
Chinese
Honeybee,

Jade Butterfly

RFID
Tracking,

Pollen Counter

Daily
Pollination
Count, Pollen

Load

Plant
Reproduction

Support

Micro RFID
Tags,

Microscopic
Imaging

Individual
Activity

Trajectories

Decomposers
Tubifex,
White Rot
Fungi

eDNA
Metabolite
Analysis

Cellulose
Degradation
Rate, Enzyme

Activity

Organic
Matter

Mineralization

High-
Throughput
Sequencer,
Spectrometer

Sediment
Sampling
Points

Seed
Dispersers

Light-vented
Bulbul, Brown

Rat

Infrared
Camera

Behavioral
Sequence
Analysis

Seed
Dispersal
Distance,

Germination
Success Rate

Vegetation
Community
Renewal

Thermal
Imaging

Camera, GPS
Collars

50-meter
Grid

Primary
Producers

Reed,
Pondweed

Chlorophyll
Fluorescence
Imaging

Net Primary
Productivity

(NPP)

Carbon
Sequestration,

Oxygen
Release

Photosynthesis
Measurement

System

Canopy
Scale

Predators Grey Heron,
Ricefield Eel

Acoustic
Predation
Event

Detection

Prey
Consumption,
Trophic Level

Position

Food Web
Stability

Maintenance

Underwater
Sonar,
Stomach
Content
Analysis

Water
Column

Monitoring

Ecosystem
Engineers

Freshwater
Clam, Mole
Cricket

3D Burrow
Structure
Scanning

Substrate
Porosity,

Water Flow
Disturbance
Intensity

Habitat
Structure

Modification

CT
Tomography,
Flow Velocity

Sensor

Microhabitat
Scale

The quantification of the value of ecological services is based on a combination of process
modelling and the market value approach, covering three core services: carbon sinks, water purification
and habitat quality. The carbon sink assessment is based on vegetation biomass and soil organic carbon
pool measurements, as shown in equation (4).

( )seq i iC B CF SOC D A      (4)

In equation (4), iB is the biomass of vegetation in category i (kg/m²), iCF is the carbon content
coefficient (e.g., 0.5 for trees and 0.45 for herbs), SOC is the organic carbon content of soil (g/kg), D is
the soil depth (m), and A is the area (ha) [18-19]. Water purification capacity is accounted for by
pollutant removal, calculated as shown in equation (5).

( )p in out pW C C Q V     (5)

In Eq. (5), inC and outC are the concentrations of ammonia nitrogen and total phosphorus at the
inlet and outlet (mg/L), respectively, Q is the hydrological flux (m³/day), and pV is the cost of treating
the pollutants per unit (yuan/kg). Habitat quality was assessed by Habitat Suitability Index (HSI),
integrating parameters such as vegetation cover, disturbance intensity and food resource abundance, and
the calculation formula was shown in Equation (6).

1

i

n
w
i

i

HSI S



(6)



In equation (6), iS is the suitability of the ith habitat factor (0-1), and iw is the weight [20]. The
parameters and data sources for quantifying the value of ecological services are shown in Table 6.

TABLE VI. ECOLOGICAL SERVICE VALUE QUANTIFICATION PARAMETERS AND DATA SOURCES

Service Type Quantification
Indicator Data Source Spatial

Scale
Temporal
Resolution

Calculation
Model

Value
Conversion
Coefficient

Carbon
Sequestration

Vegetation
Biomass, Soil
Organic Carbon

Airborne
LiDAR, Soil
Core Sampling

Patch
Level Annual

InVEST
Carbon
Module

Carbon Trading
Price (¥/t)

Water
Purification

Ammonia
Nitrogen, Total
Phosphorus
Removal

Automatic
Water Quality
Monitoring
Stations

Watershed
Level Daily

SWAT
Hydrological

Model

Wastewater
Treatment Cost

Habitat
Quality

Habitat
Suitability Index

(HSI)

Species
Distribution
Model

Landscape
Level Quarterly MaxEnt

Algorithm

Habitat
Restoration

Cost

Pollination
Service

Crop Yield
Increase Ratio

Farm Yield
Statistics

Regional
Level

Growing
Season

Pollen
Limitation
Model

Agricultural
Market Price

Biological
Control

Pest Predation
Rate

Trap
Monitoring

Data

Field
Level Weekly

Predator-Prey
Dynamics
Model

Pesticide
Replacement

Cost

Cultural
Services

Recreational
Visits

Mobile
Signaling

Location Data
City Level Real-Time Travel Cost

Method

Per Capita
Consumption
Expenditure

The spatial heterogeneity analysis of ecological services relies on the Geographic Information
System (GIS) platform to standardise and weight the carbon sink, water purification and habitat quality
indicators. The weights were assigned using the Analytic Hierarchy Process (AHP), and 15 experts in
the fields of ecology and urban planning were invited to compare the importance of each service, and the
Consistency Ratio (CR) was controlled within 0.1. For example, the weight of carbon sink service was
set to 0.35, water purification to 0.30, habitat quality to 0.25, and cultural service to 0.10, reflecting the
difference in the priority of wetland ecological functions.

The coupling between functional groups and ecological services was realised by Structural
Equation Modeling (SEM). Pollinator abundance was assumed to positively influence vegetation
productivity (path coefficient β 1), decomposer activity to drive carbon sink capacity (β 2), and
predator numbers to regulate pest control services (β3), and green space morphological parameters (e.g.,
patch density, connectivity index) were introduced as exogenous variables. Model fitting was performed
by maximum likelihood estimation, and the fitness was assessed by chi-square test (χ² /df<3) and
Comparative Fit Index (CFI>0.9) to ensure the scientific validity of the theoretical framework.

III. COUPLED ANALYSIS OF LAYOUT PATTERNS AND BIOLOGICAL FUNCTIONS

A. Characteristics of green space distribution under urbanisation gradient
The differences in green space distribution in the core, edge and suburban areas of the study area

significantly affect the continuity of wetland biological community functions. Based on the landscape
pattern index and biological activity monitoring data, the green space distribution under the urbanisation
gradient is characterised by increasing patch fragmentation, decaying functional connectivity and
imbalance of ecological service supply and demand. The average density of green space patches in the
core area (within a radius of 5 km) is 27.4 patches/km², 3.4 times higher than that in the suburbs (8.1



patches/km²), but the average patch area is only 0.26 hectares, which is less than 1/6 of that in the
suburbs (Table 7). The high fragmentation characteristics led to an Edge Density (ED) of 192.3 m/ha
and a patch Shape Index (SI) of 4.7 in the core area, indicating that the complexity of habitat boundaries
disturbed by human activities far exceeded the natural wetland threshold. The comparison of green space
morphological parameters under different urbanisation gradients is shown in Table 7.

TABLE VII. COMPARISON OF GREEN SPACEMORPHOLOGICAL PARAMETERS ACROSS URBANIZATION
GRADIENTS

Region Type Patch Density
(patches/km²)

Mean
Patch

Area (ha)

Edge
Density
(m/ha)

Connectivity
Index

Water
Proximity

(m)

Aggregation
Index (%)

Core Urban Area 27.4 0.26 192.3 0.15 368.9 39.6
Urban Fringe 16.2 0.82 130.7 0.31 225.4 52.1
Suburban Area 8.1 1.61 86.5 0.63 142.8 69.3
Wetland Core
Protected Area 5.3 2.34 58.2 0.78 65.7 76.8

Along
Transportation
Corridors

21.5 0.33 160.8 0.19 302.1 43.9

Industrial
Development Zone 29.8 0.18 210.4 0.09 418.5 35.2

In Table 7, the patch density and edge density of the core area are significantly higher than those of
other areas, but the connectivity index (0.15) is only 19.2% of that of the wetland core reserve,
indicating that the green space in the city centre is highly fragmented and ecological flow is impeded.
Although the average patch area of green space in the fringe area (0.82 ha) is larger than that in the core
area, its connectivity index (0.31) is still lower than that in the suburbs (0.63), which is mainly due to the
fact that the green space in the fringe area is mostly distributed in a narrow strip along the roads or rivers,
and the node breaks (such as bridges and overpasses across the rivers) lead to the interruption of the
paths of organisms' migratory paths by 2.8 times. The aggregation index (76.8%) of the wetland core
reserve is much higher than that of the built-up area, which confirms the spatial integrity of the natural
wetland and the biological shelter function.

The blocking effect of high-density built-up areas (>70% coverage) on wetland connectivity was
spatially cumulative and non-linear. When the coverage rate of built-up area increases from 30% to 70%,
the number of effective ecological corridors decreases sharply from 9.2 to 2.1, and the average width of
corridors is compressed from 41.7 to 14.6 metres. Take an urban wetland as an example, the new
residential area (plot ratio 3.2) on the east side of the wetland reduced the number of corridors
connecting the wetland with the mountain green space from 6 to 1, and the remaining corridor width was
less than 20 metres, resulting in a 62% reduction of heron's nesting area. The blocking effect was further
amplified by artificial lighting (>50 lux) and traffic noise (>70 dB) at night, and the insect diversity
within 0-200 m of the wetland edge decreased by 58%, which directly affected the foraging efficiency of
birds (e.g. night herons). The effects of different built-up densities on wetland connectivity are shown in
Table 8.

TABLE VIII. IMPACT OF BUILT-UP DENSITY ONWETLAND CONNECTIVITY

Built-Up Area
Coverage (%)

Effective
Corridor
Count

Average
Corridor
Width (m)

Minimum
Interruption
Distance (m)

Biological
Migration

Success Rate (%)

Noise
Level
(dB)

Light
Intensity
(lux)

<30 9.2 41.7 505 80.3 47.5 11.8
30-50 6.4 31.9 272 61.7 56.9 23.5



Built-Up Area
Coverage (%)

Effective
Corridor
Count

Average
Corridor
Width (m)

Minimum
Interruption
Distance (m)

Biological
Migration

Success Rate (%)

Noise
Level
(dB)

Light
Intensity
(lux)

50-70 3.5 20.1 135 40.9 64.3 37.2
>70 2.1 14.6 68 25.4 71.8 49.6

Around
Transportation

Hubs
1.3 8.7 30 13.8 79.5 65.3

Around Industrial
Areas 0.6 5.9 15 7.5 86.7 87.1

In Table 8, when built-up area coverage exceeded 50 per cent, biological migration success (40.9
per cent) decreased by nearly 50 per cent compared to the low-density area (80.3 per cent), and noise
levels (64.3 dB) and light intensity (37.2 lux) approached wetland biological tolerance thresholds. The
effective corridor width in the area around the transport hub is only 8.7 metres, with a minimum
interruption distance of 30 metres, forcing small and medium-sized mammals (e.g. ferrets and badgers)
to extend their migration paths by a factor of 3.2. The light intensity of 87.1 lux around the industrial site
caused nocturnal insects (e.g. moths) to retreat 1.5 km to the wetland core area, exacerbating
intraspecific competition among predators (e.g. bats) in the core area.

The distribution of green space in the core area was highly coupled with the intensity of land
development. In high-rise building density areas with plot ratios >3.0, 68% of green space patches are
road green belts or rooftop gardens, and patch spacing is generally less than 40 m. However, functional
connectivity is severely disturbed by vibration from traffic (frequency 20-50 Hz) and light reflection
from glass curtain walls. For example, the theoretical migration path between adjacent green space
patches in a commercial area is 90 m, but infrared camera monitoring shows that the actual migration
success rate of amphibians (e.g., the Chinese giant toad) is only 12%, which is mainly due to the hard
road segregation and the interference of night-time lighting. Although the green space in the fringe area
has banded continuity, its ecological function has been weakened by artificial management - 63% of the
river green space has been converted into hard barge, the cover of aquatic plants has been reduced from
72% to 19%, and the biomass of benthic animals (e.g. snails) has been reduced by 81%.

The morphological integrity of suburban green spaces is high, but ecological functions are
implicitly eroded by agricultural activities and recreational facilities. In large suburban wetland parks
(>50 ha), 55% of the water body shoreline was hardened by walkways and hydrophilic platforms,
resulting in a decrease in submerged plant (e.g., tunicates) cover from 68% to 14%, and the benthic
fauna diversity index (Shannon-Wiener) from 2.4 to 1.1. In addition, pesticide dispersal exceeded the
pyrethroid concentration in the water bodies of the suburban wetland by a factor of 1.8, which directly
suppressed dragonfly larval plumage rates (down 43%). Nevertheless, some ecological springboards
(e.g., woodland patches of 1-2 ha in size) were still retained in the suburban area, and their spacing was
mostly less than 150 m, which provided migration paths for small mammals (e.g., hedgehogs), and the
migration success rate was 5.3 times higher than that in the core area.

The wetland-built-up area interface zone (0-500 m range) is the transition zone with the most
drastic degradation of ecological functions. The average density of green space patches in the interface
zone is 19.8 patches/km², but the connectivity index is only 0.21, and 81% of the patches are cut off by
car parks and fitness facilities. Acoustic monitoring data shows that the frequency of bird calls in the
interface zone is 79% lower than that of natural wetlands, and the Acoustic Diversity Index (ADI) has
dropped from 0.75 to 0.26. At the same time, the artificial light at night in the interface zone causes 83%
of nocturnal insects to migrate to the interior of the wetland, forcing the density of insects in the core
area of the wetland to increase by 2.4 times and further breaking the balance of the original food chain.

The above results show that the green space distribution characteristics under the urbanisation
gradient is not only the result of planning decisions, but also a dynamic game between biological
behavioural responses and human activities' coercion.



B. Biometrics-driven functional response
The spatial matching characteristics of species diversity hotspots and green space nodes revealed by

biometrics provide high-precision evidence for resolving the coupling mechanism between layout
patterns and ecological functions. Multi-source data fusion based on infrared camera, acoustic recorder
and Environmental DNA (eDNA) macro-barcoding technology showed that the functional response of
urban wetland biomes had significant spatial heterogeneity and scale dependence. The mean value of
species diversity index (Shannon-Wiener, H') within 50 m of the edge of the wetland in the core area
was only 1.2, which was significantly lower than that of 2.7 in the suburban wetland, but the combined
effect of artificial light intensity (>45 lux) and traffic noise (>65 dB) at night led to the formation of
unique “artificial-natural” transitional biological communities in the core area. The combination of
nighttime artificial light intensity (>45 lux) and traffic noise (>65 dB) resulted in the formation of a
unique 'artificial-natural' transitional community in the core area. For example, tolerant species (e.g.,
house sparrows, brown house mice) accounted for 78% of the wetlands in the core area, while sensitive
species (e.g., herons, dragonflies) accounted for only 12%, and their ranges were compressed to isolated
patches less than 0.5 ha in size. The match between species diversity hotspots and green space nodes in
different regions is shown in Table 9.

TABLE IX. SPECIES DIVERSITY HOTSPOT AND GREEN SPACE NODEMATCHING IN DIFFERENT REGIONS

Region Type
Species
Diversity
Index (H')

Hotspot Density
(individuals/km²)

Number
of Green
Space
Nodes

Node-
Hotspot
Matching
Rate (%)

Proportion of
Sensitive

Species (%)

Proportion of
Tolerant

Species (%)

Core Area
Wetland Edge 1.2 3.5 8 22.4 12 78

Edge Area
River

Corridor
2.1 6.8 15 48.7 34 59

Suburban
Natural
Wetland

2.7 11.4 23 72.9 58 35

Traffic Green
Space Nodes 0.9 1.2 3 8.6 5 91

Industrial
Zone

Greenbelt
0.7 0.8 2 4.3 2 94

Ecological
Restoration
Demo Area

2.5 9.7 18 65.2 49 42

In Table 9, the node-hotspot matching rate of natural wetlands in the suburban area (72.9%) was
3.3 times higher than that of the wetland edge in the core area (22.4%), confirming the key role of green
space morphological integrity in biodiversity maintenance. Although the river corridor in the fringe area
had a high density of hotspots (6.8/km²), the percentage of sensitive species (34%) was still significantly
lower than that in the suburban area (58%), which was mainly due to the loss of aquatic insect habitats
caused by hard barge renovation. The species diversity index (0.7) and matching rate (4.3%) of the
isolated green belt in the industrial area were the lowest, indicating that green spaces relying solely on
visual amenity could not support ecological functions.

The sensor network data further revealed the prevalence of 'ecological blind zones' in urban
wetlands. In the border zone between built-up areas and wetlands (0-200m range), the frequency of bird
calls detected by acoustic recorders was 89% lower than that in the core area of natural wetlands, and the
Acoustic Diversity Index (ADI) dropped from 0.81 to 0.19. Infrared camera monitoring showed that the
frequency of nocturnal mammals (e.g., hedgehogs) in the blind zones dropped by 76%, and their



migration paths were blocked by car parks and fences. Their migration paths were forcibly shifted by
more than 1.2 km by facilities such as car parks and fences. eDNA analysis showed that the zooplankton
biomass in the water body of the blind zone was only 14% of that of the natural wetland, and the
proportion of fouling-tolerant species (e.g., trembling earthworms) was as high as 93%, reflecting the
cascading destruction of the ecological chain caused by the implicit environmental stresses. Comparison
of sensor monitoring data in typical ecological blind zones is shown in Table 10.

TABLE X. COMPARISON OF SENSORMONITORING DATA IN TYPICAL ECOLOGICAL BLIND SPOTS

Blind Spot
Type

Location
Characteristics Sensor Type

Species
Diversity
Index (H')

Sensitive
Species
Activity
Decline
Rate (%)

Main
Interference

Type

Ecological
Function
Decline
Rate (%)

Elevated
Bridge

Projection
Area

Under the
bridge, 0-50
meters

Acoustic
Recorder +
Infrared
Camera

0.5 92 Noise (>75
dB) 84

Glass Curtain
Wall

Reflection
Zone

50-100 meters
south of
building

Polarization
Light Sensor 0.7 88

Light
Pollution
(>80 lux)

79

Hard
Embankment
Transition
Zone

0-30 meters at
river-road
junction

eDNA
Sampler 0.9 76 Hydrological

Pulse 68

Night Lighting
Intensive Area

Streetlight
spacing < 20

meters
Spectrometer 0.6 95

Artificial
Lighting (>50

lux)
87

Parking Lot
Permeation

Zone

0-100 meters at
wetland
boundary

Soil Moisture
Probe 0.4 83 Oil Pollution

Percolation 72

Fitness Trail
Disturbance

Zone

0-15 meters on
both sides of
the trail

Vibration
Sensor 0.8 69 Human

Footstep 61

In Table 10, the projected area of the viaduct has the highest rate of ecological function attenuation
(84%) and the highest rate of sensitive species activity decline (92%), and its noise level (>75 dB)
exceeds the auditory tolerance threshold of most bird species (<60 dB), resulting in the complete
avoidance of species such as house swallows. The intensity of light pollution (>80 lux) in the reflective
zone of the glass curtain wall triggered disruption of phototropic behaviour in insects, with 73% of
individual nocturnal moths monitored to be dead on impact with the curtain wall, which directly cut
down on the food supply for predators such as bats. The benthic community structure in the transition
zone of the hard barge was homogenised by hydrological pulses (storm water runoff velocity >1.2 m/s),
and the proportion of oligochaete biomass detected by eDNA increased from 42% in the natural state to
89%.

Biometrics also captured the 'spatial-temporal mismatch' phenomenon in green space nodes. The
detection rate of birds in the arboreal woodland node (area >0.3 ha) of the artificial wetland park in the
core area was only 0.3 birds/hour during the peak period of human activities in the daytime (10:00-
16:00), and increased to 2.1 birds/hour in the early morning (5:00-7:00), suggesting fluctuation of
ecological functions in the temporal dimension. The frequency of pollinator (e.g. honeybee) visits to
green space nodes in the fringe zone was significantly out of phase with the flowering period of the



vegetation - peak pollination was delayed by 14 days compared to the natural community in the
cultivated beds, resulting in a 37% increase in pollen limitation.

Sensor data-driven recommendations for spatial optimisation showed that the addition of micro-
corridors >20m wide between existing green space nodes increased amphibian migration success by
58%. A core wetland expanded the dispersal range of black-spotted frog populations by 1.8 times by
implanting three shrub barrier strips (25 m in width). Among the ecological blind zones identified, 83%
of them can be functionally restored through simple interventions (e.g., adjusting the wavelength of
street lamps to below 590 nm and installing sound barriers), and the diversity of nocturnal insects can be
rebuilt to 65% of its natural state.

These results show that biometrics not only accurately quantifies the coupling relationship between
green space morphology and biological functions, but also reveals the hidden ecological stress
mechanisms that are difficult to be captured by traditional survey methods.

C. Coupling model construction and optimisation path
The coupling model constructed based on machine learning algorithm and ecological resilience

theory reveals the non-linear correlation law between green space layout pattern and wetland biological
function, and provides a precise optimisation path for urban ecological restoration. The study uses three
types of algorithms, namely Random Forest (RF), Gradient Boosting Decision Tree (GBDT) and
Support Vector Machine (SVM), to compare and analyse the results, and the results show that the
Random Forest model is very effective in predicting the responses of biological functions (e.g., species
diversity, carbon sink efficiency). Species diversity and carbon sink efficiency), with a cross-validation
coefficient of determination (R²) of 0.83, significantly higher than that of GBDT (0.76) and SVM (0.68).
Among the model input parameters, the green space connectivity index (CONNECT) and water
proximity (WP) contributed 32.7% and 28.5%, respectively, while the negative effect weight of patch
density (PD) was 19.3%, confirming that ecological flows are the core driver of biological functions.
This confirms the central driving role of ecological flow continuity on biological functions. The
predictive performance of the machine learning model with parameter sensitivity is shown in Table 11.

TABLE XI. MACHINE LEARNINGMODEL PREDICTION PERFORMANCE AND PARAMETER SENSITIVITY

Model
Type

Coefficient of
Determination

(R²)

Root
Mean
Square
Error

(RMSE)

Run Efficiency
(seconds/iteration)

Connectivity
Index

Contribution
(%)

Water
Proximity
Contribution

(%)

Patch
Density

Contribution
(%)

Random
Forest (RF) 0.83 0.12 45 32.7 28.5 19.3

Gradient
Boosting
Decision
Tree

(GBDT)

0.76 0.18 62 29.4 25.8 22.1

Support
Vector
Machine
(SVM)

0.68 0.24 89 24.6 21.3 26.9

Artificial
Neural
Network
(ANN)

0.79 0.15 105 31.2 27.1 18.7

Bayesian
Regression 0.61 0.31 28 18.9 16.5 31.4



Model
Type

Coefficient of
Determination

(R²)

Root
Mean
Square
Error

(RMSE)

Run Efficiency
(seconds/iteration)

Connectivity
Index

Contribution
(%)

Water
Proximity
Contribution

(%)

Patch
Density

Contribution
(%)

(BR)
Decision
Tree (DT) 0.72 0.21 37 26.3 23.7 24.6

In Table 11, the random forest model performs the best in both the coefficient of determination
(0.83) and the running efficiency (45 s/run), and its high accuracy stems from the ability to adaptively
capture nonlinear relationships. The contribution of water body proximity (28.5%) indicates that the
spatial interaction effect between wetland and green space is a key factor in the maintenance of
biological functions, while the negative weight of the contribution of patch density (19.3%) corroborates
the inhibitory effect of high fragmentation on ecological services. The Bayesian regression model's
prediction accuracy (R ² =0.61) was significantly lower than other algorithms due to its inability to
handle high-dimensional interaction features, highlighting the advantages of machine learning in
complex ecological modelling.

The planning framework of 'multi-centre + corridor' under the perspective of resilient city improves
the disturbance resistance of wetland ecosystem through spatial reorganisation and functional
optimisation. The polycentric layout refers to the implantation of green nodes with an area of >1 ha and
a spacing of <500 m in the built-up area as stepping stones for biological dispersal, while the ecological
corridors need to meet the requirements of the minimum effective width (30 m) and the heterogeneity of
the vegetation cover (tree-shrub-grass ratio of 4:3:3). Simulation shows that after the implementation of
the framework, the nesting area of wetland birds in the core area can be enlarged by 2.3 times, the
pollination efficiency of insects can be increased by 41%, and the peak of storm water runoff can be
delayed by 0.8 hours, reducing the risk of waterlogging. The planning path and implementation effect of
'multi-centre + corridor' are shown in Table 12.

TABLE XII. “MULTI-CENTER + CORRIDOR” PLANNING PATH AND IMPLEMENTATION EFFECT
OPTIMIZATION PATH

Implementation
Measure

Expected Ecological
Gain (%) Technical Support

Cost-
Effectiveness

(10,000 CNY/ha)
Key Constraints

Multi-Center Green
Space Insertion

Add 1-3 ha of
community parks,
spacing <500 meters

Drone Site
Selection
Algorithm

120-150
Difficulty in

integrating land
ownership

Ecological Corridor
Restoration

Widen corridor to 30
meters, plant multi-
layered trees, shrubs,

and grasses

LiDAR Terrain
Modeling 80-100

Avoidance of
existing

infrastructure

Wetland Buffer
Zone Reconstruction

Retreat hardened
shoreline, restore 50
meters of submerged

plant belt

Hydrological
Connectivity
Simulation

60-80
Property value

loss in waterfront
real estate

Ecological
Renovation of

Artificial Facilities

Replace glass curtain
walls with ecological
walls, reduce noise by

60%

Acoustic Material
Performance
Testing

200-250 High initial
investment cost

Light Pollution
Control

Replace LED
wavelength to
<590nm, reduce

Spectral Analysis
& Smart

Regulation System
30-50

Conflicts with
municipal lighting

standards



Implementation
Measure

Expected Ecological
Gain (%) Technical Support

Cost-
Effectiveness

(10,000 CNY/ha)
Key Constraints

nighttime lighting
Stormwater
Management
Coordination

Build permeable
paving + rain garden

system

SWMMModel
Optimization 40-60

Underground
pipeline

renovation limits
In Table 12, the expected ecological gain (+57% migration success) and cost-effectiveness (RMB

800-1 million/ha) of ecological corridor restoration are combined optimally, and its technical support
relies on LiDAR terrain modelling to accurately identify topographic relief and hydrological pathways.
The ecological modification of artificial facilities is more costly (RMB 2-2.5 million/ha), but it can
significantly increase the return rate of birds (+29%), which is especially suitable for high-density
commercial areas. Light pollution regulation measures achieve rapid insect diversity recovery (+63%) at
lower cost (300,000-500,000 RMB/ha), but require coordination of municipal lighting standards to avoid
traffic safety risks.

Model-driven spatial optimisation suggests that adding 3-5 north-south ecological corridors >25 m
wide to the current green space layout can reduce resistance to biotic migration between wetlands in the
core area and the suburbs by 62%. For example, in one city, a network of corridors connecting wetland
parks with peri-urban forest parks resulted in a 1.7-fold expansion of habitat area for medium-sized
mammals (e.g., raccoon) and a 48% increase in the frequency of gene exchange. In addition, machine
learning identified 'inefficient green spaces' (high morphological index but low functional contribution)
that accounted for 23% of the total green space, and through micro-adaptation (e.g., increasing the shrub
layer and installing ecological depressions), their carbon sink efficiency could be increased by 34%.

The implementation of the resilience planning framework needs to break through traditional land
management barriers. It is recommended that ecological corridors be incorporated into the red line
control system of urban roads, and that banded spaces with a width of >30 metres be mandatorily
reserved; a land exchange mechanism for wetland buffer zones be established, allowing developers to
balance the development intensity of waterfront areas through off-site eco-compensation; and an 'eco-
banking' system be promoted to turn the ecological service value of greenfield nodes into tradable
credits, attracting the participation of social capital. The system of 'eco-banking' is promoted, and the
ecological service value of green space nodes is transformed into tradable credits to attract social capital
participation. The integrated application of the above paths can significantly increase the resilience
threshold of urban wetlands to cope with climate change and human interference.

IV. CONCLUSION

The sustainability of urban wetland biome function is deeply regulated by green space layout patterns,
while traditional planning lacks quantitative constraints on the dynamic response of ecological processes.
Aiming at the problems of blocked ecological flow and increased implicit stress in high-density urbanised
areas, we integrate multi-source remote sensing data, biometric sensor networks and machine learning
algorithms to construct a cross-scale coupled analysis framework. By analysing the green space gradient
characteristics of mega urban agglomerations such as the Yangtze River Delta and Pearl River Delta, it is
found that the fragmentation of green space in the core area (patch density >24 patches/km ² )
synergistically with the artificial light at night (>45 lux) leads to a decrease in the percentage of sensitive
species to 12%, and the frequency of disruption of ecological flow in strip green space in the edge area
due to the nodal fault zones increases by 2.8 times. The Random Forest model quantified the dominant
effects of connectivity index and water proximity, with contributions of 32.7% and 28.5% respectively,
providing data support for accurate identification of inefficient green spaces. The proposed 'multi-centre
+ corridor' planning pathway was simulated and verified, which can expand the wetland bird habitat by
2.3 times and increase the pollination efficiency of insects by 41%, confirming the significant benefits of
morphological optimization on ecological function recovery.

The practical value of the study lies in the development of a dynamic assessment system based on the
chain reaction of biological behaviours, which breaks through the limitations of the traditional static



indicators in the characterization of complex ecological processes, and provides a quantitative basis for
the design of ecological compensation mechanisms in urban regeneration. The limitations are that the
data coverage is limited to the cities in the East Asian monsoon region, and the applicability to the cities
in the arid and cold regions needs to be verified; and the prediction accuracy of the machine learning
model for sudden disturbances (e.g., extreme rainfall, species invasion) needs to be further improved. In
the future, we should strengthen the real-time monitoring capability of multi-sensor Internet of Things
(IoT), integrate urban climate models with ecotoxicological data, and build a decision support system for
the whole process of 'stress-response-adaptation'. Explore the replacement model of ecological restoration
benefits and land economic value, promote the transformation of green space from 'cost burden' to 'asset
value-added', and provide methodological innovations for the synergistic promotion of smart city and
ecological civilisation construction.
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