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Abstract:
In recent years, garden robots have gained increasing attention for their potential to automate

tasks such as lawn maintenance, watering, and monitoring. However, a significant challenge in the
development of these robots is achieving precise and reliable autonomous navigation in complex
garden environments. This paper addresses this problem by proposing a combined navigation
solution that integrates the Beidou satellite positioning system with a machine vision navigation
system. The proposed approach aims to enhance the accuracy and robustness of garden robot
navigation. The vision system employs an improved grayscale factor and vertical grayscale
projection technique to filter out noise interference, leveraging differences in noise characteristics
and road surface occupancy. Trapezoidal four-point coordinates are then used to extract the
navigation path. For satellite-based positioning, the ultra-core HI600R module is utilized in
conjunction with the HI600D reference station to construct a minimal RTK (Real-Time Kinematic)
system. The raw data from both systems is processed using the Kalman filter algorithm, and the
Gaussian-Krüger projection is applied to transform the coordinate system. The final navigation
path is generated through a fusion algorithm that combines data from both the Beidou and vision
systems. Experimental results demonstrate that the proposed navigation system achieves high
accuracy and excellent stability, with an average positioning error of less than 0.2 meters in static
conditions and less than 0.5 meters in dynamic conditions. These findings highlight the potential
of the Beidou-vision fusion approach for practical applications in garden robot navigation.
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1 Introduction
Autonomous navigation technology plays a crucial role in enabling vehicles to perceive their

surroundings and autonomously plan travel paths. The core technologies underpinning this
capability include positioning technology, environmental perception technology, and intelligent
control technology [1]. In recent years, significant advancements have been made in these areas
both domestically and internationally, yet challenges persist, particularly in achieving high
precision and reliability in complex environments.

Global Navigation Satellite Systems (GNSS), such as the United States' GPS, Russia's
GLONASS, and China's Beidou Navigation Satellite System, are widely used for positioning tasks
[2]. Among these, the Beidou system has gained prominence due to its high accuracy, reliability,
and growing global coverage. To meet the stringent requirements of autonomous navigation,
centimeter-level positioning accuracy is essential. High-precision positioning technologies, such
as Real-Time Kinematic (RTK) and Precise Point Positioning (PPP), have been developed to
address this need [3]. While RTK offers real-time high-accuracy positioning, it requires a
reference station, which can limit its application in certain scenarios.

Environmental perception technology relies heavily on sensors such as cameras, LiDAR, and
radar to gather information about the surrounding environment. Vision-based systems, in
particular, have been extensively studied due to their ability to detect obstacles, identify road



features, and provide detailed visual data [4]. Internationally, significant progress has been made
in this field. For instance, American scholar E.R. Benson and colleagues proposed a machine
vision guidance algorithm that accurately locates cut and uncut edges for agricultural machinery,
providing lateral positioning signals for autonomous navigation [5]. Similarly, Vijay Subramanian
and colleagues developed an integrated autonomous guidance system combining machine vision
and LiDAR, demonstrating the potential of multi-sensor fusion approaches [6].

Despite these advancements, individual sensor technologies often face limitations. GNSS
systems, for example, may suffer from signal loss or multipath interference in environments with
dense vegetation or urban canyons. Vision-based systems, while powerful, can be affected by
lighting conditions, weather, and occlusions. These limitations highlight the necessity for
integrated navigation solutions that combine the strengths of multiple sensors to achieve robust
performance.

Multi-sensor fusion-based integrated navigation technologies have emerged as a promising
solution to overcome these challenges. However, existing research still faces gaps in terms of
computational efficiency, data fusion accuracy, and adaptability to diverse environments.
Specifically, the fusion of satellite-based positioning and vision-based perception remains an
underexplored area, particularly in applications such as garden robots, where precise and reliable
navigation is critical.

To address these issues, this paper proposes a novel navigation algorithm that integrates the
Beidou satellite positioning system with a machine vision system. In the visual processing stage,
an improved grayscale factor is introduced to enhance image preprocessing, followed by an edge
extraction algorithm to optimize processing speed and accuracy. In the Beidou positioning stage,
the Kalman filter algorithm is employed to refine raw positioning data, improving its precision
and stability. Finally, the coordinate systems of the two subsystems are unified through
Gaussian-Krüger projection, enabling seamless data fusion and generating a combined navigation
path.

This approach aims to leverage the complementary strengths of Beidou and machine vision,
addressing the limitations of individual sensors and advancing the state-of-the-art in autonomous
navigation technology. By focusing on practical applications such as garden robots, the proposed
solution seeks to bridge the gap between theoretical research and real-world implementation.

2. Machine Vision Algorithm
2.1 Experimental Platform Setup and Workflow

The experimental platform primarily consists of a tracked vehicle base, a main control
computer, a camera, and a motor control module. The camera used is the HQ-USB-1080HD
camera module from LeGo Intelligent Electronics, which utilizes USB 2.0 for data transmission.
Experimental data is processed using the MATLAB platform.
2.2 Image Preprocessing
2.2.1 Image Cropping

Since structured garden roads are the main focus of this study, and garden roads typically
feature relatively straight lines on both sides with some curvatures in certain areas, part of the
image is cropped. This reduces interference, simplifies the computational load, and improves
image processing speed, while also addressing the curvature issues of winding roads [7]. After
conducting multiple experiments, it was determined that cropping the lower 300 rows of the



captured image yielded the best results.
2.2.2 Grayscale Conversion

Common methods for image grayscale conversion include the component method, maximum
value method, average value method, and weighted average method [8]. Considering that the
vehicle operates in garden road environments, the super-green feature threshold segmentation
algorithm is typically employed. This algorithm effectively suppresses interference from shadows,
dry grass, and road surfaces, thereby highlighting plant and grass images and enabling more
effective extraction of green vegetation images [9]. The super-green feature threshold segmentation
factor is defined as shown in Equation (1). Based on this factor, this paper proposes an improved
grayscale factor, as expressed in Equation (2). In the equations, gray(x,y) epresents the grayscaled
image, while R, G, and B denote the red, green, and blue color components of the original color
image, respectively.

gray(x, y) =
0, 2G − R − B < 0
255 , 2G − R − B > 255
2G(x, y) − R(x, y) − B(x, y), else

(1)

gray(x, y) =
0, 3R − 2B − G < 0

255 , 3R − 2B − G > 255
2B(x, y) − G(x, y), else

(2)

This study adopts a method of first cropping the original image and then applying grayscale
conversion. This approach reduces the pixel size of the image and decreases the number of pixels
to be processed, thereby not only improving the algorithm's operational speed but also enhancing
the overall robustness of the system. The effectiveness of the proposed new grayscale factor was
validated through 100 sets of comparative experiments, as shown in Figure 1:

Figure 1 Comparison of Experimental Results
As shown in Figure 1, the improved grayscale factor demonstrates a significantly better

suppression effect on road surface pixels in garden environments compared to the super-green
feature factor. It also provides more prominent segmentation of edge pixels.
2.2.3 Image Filtering and Binarization

Considering the working environment of the robot, salt-and-pepper noise was intentionally
added to the images, and median filtering was applied for smoothing. Image binarization is a
critical method in machine vision for segmenting images. Its principle involves setting the
grayscale values of the pixels in the image to either 0 or 255. Common binarization methods
include Otsu’s method (maximum between-class variance), maximum entropy thresholding, the
bimodal method, and the iterative method (optimal thresholding) [10]. In this study, Otsu’s method

Super green characteristic factor

3R-2B-G characteristic factor



was used for image binarization. Otsu’s method is an algorithm that determines the optimal
threshold for binarization by maximizing the between-class variance of the foreground and
background in an image. Considering the complexity of the robot’s operational environment, the
threshold obtained using Otsu’s method was applied for binarization, ensuring that the variance
between the foreground and background classes was maximized.
2.2.4 Mathematical Morphology Processing

Morphological processing typically involves the use of opening or closing operations.
Opening operations are primarily used to eliminate small regions with high brightness, while
closing operations are mainly used to fill in small holes [11]. After image binarization, noise and
small holes are often present. To eliminate these interferences, morphological closing operations
can be applied to fill in the holes, as expressed in Equation (3).

A ∙ B = （A ⊕ B） ⊖ B (3)
In this context, A represents the image, and B is the structuring element. The morphological

closing operation involves first dilating image A with structuring element B, as expressed in
Equation (4), and then eroding the resulting image C with , as expressed in Equation (5).

A ⊕ B = {x|(B + x) ∩ x ≠ ∅} (4)
C ⊝ B = {x|(B + x) ⊆ A} (5)

2.3 Navigation Line Extraction
2.3.1 Vertical Grayscale Projection

According to the principles of camera imaging, road images in the surface region are
approximately trapezoidal. Therefore, the key to extracting navigation lines lies in detecting the
road edges and segmenting the road from the background [12]. Commonly used edge detection
operators include the Roberts operator, Prewitt operator, Sobel operator, Laplacian operator, and
Canny operator [13]. However, these differential operators require derivative calculations, which
increase the processing time for the computer.

This study employs the vertical grayscale projection method of pixel points to obtain the road
surface region. Based on the significant size difference between noise and the road surface region,
an appropriate threshold is selected to eliminate the influence of noise. The specific process is as
follows:

1) In the binary image, white pixel points correspond to a pixel value of 1, and black pixel
points correspond to a pixel value of 0. The pixel values in each column are then summed, as
shown in Equation (6).

V(i, j) = i=1
n A(i, j), j = 0,1,2, ···, m� (6)

In this equation, V(i,j) represents the sum of the pixel values in each column, A(i,j) is the value of
each pixel in the binary image, n is the total number of columns in the binary image, and m is the
total number of rows in the binary image.

2) An appropriate threshold T is selected, and regions in V(i,j) with values less than T are
identified as noise. The values in these regions are then set to 0.

3) The column coordinates corresponding to the maximum values in V(i,j) are taken as the
upper vertex coordinates X1 and X2 of the trapezoid, while the column coordinates corresponding
to the minimum values are taken as the lower vertex coordinates X3 and X4.
2.3.2 Navigation Line Extraction

Currently, navigation line extraction is commonly performed using the Hough transform or
the least squares method [14]. The least squares method is prone to interference from noise points



[15], while the Hough transform, although resistant to noise, has high time and space complexity
due to its inherent characteristics [16]. Considering these factors, this study leverages the specific
properties of camera imaging, where the road region image is approximately trapezoidal, and uses
the four vertices of the extracted trapezoid to determine the navigation line.

Based on the geometric properties of the trapezoid, the axis line corresponds to the robot’s
travel path. The midpoints of the upper and lower bases of the trapezoid can be calculated using
Equations (7) and (8), and the navigation line can be obtained using the two-point form of a
straight line as expressed in Equation (9).

�1 = �1+�2
2

(7)

�2 = �3+�4
2

(8)

�−�2
�1−�2

= �−�2
�1−�2

(9)

In this context, C1 and C2 represent the midpoint coordinates of the upper and lower bases,
respectively. (x1,y1) are the coordinates of point C1, and (x2,y2) are the coordinates of point C2.
2.4 Experiment and Analysis

The experiment was conducted at Nanning Flower Park, with image capture sizes of
480×640. To verify the effectiveness of the proposed algorithm, a relatively complex image was
selected as the research object. The original image is shown in Figure 2(a); the cropped image
containing the valid region of the last 300 rows is shown in Figure 2(b); the grayscale image
obtained using the super-green feature factor for grayscale processing is shown in Figure 2(c); the
grayscale image obtained using the improved feature factor for grayscale processing is shown in
Figure 2(d); after applying Otsu’s method for binarization to Figure 2(d), the result is shown in
Figure 2(e). As can be seen, there is still a significant amount of noise interference, but performing
a morphological closing operation eliminates most of the noise, as shown in Figure 2(f); the
vertical grayscale projection of Figure 2(f) is shown in Figure 2(g); after selecting threshold T to
eliminate noise, the result is shown in Figure 2(h); after extracting the midpoint coordinates using
the proposed algorithm, the connected navigation line is shown in Figure 2(i); and finally, the
fitted robot travel path is shown in Figure 2(j).

(a) Original Image (b) Cropped Image

(c) Super-Green Feature Factor (d) Improved Grayscale Factor



(e) Binarization (f) Mathematical Morphological Processing

(g) Vertical Grayscale Projection (h) After Noise Elimination

(i) Extracted Navigation Line (j) Fitted Navigation Line
Figure 2 Experimental Processing Images

3 Beidou Navigation-Based Positioning Algorithm
3.1 Beidou Navigation Satellite System

The Beidou Navigation Satellite System (BDS) is an independently developed satellite
navigation system by China, and it is the third mature satellite navigation system after the GPS
(Global Positioning System) developed by the United States and the GLONASS (Glonass System)
developed by Russia. In the late 20th century, due to the needs of national security and economic
and social development, China began to gradually build a global satellite navigation system. This
system provides global users with all-weather, all-time, high-precision positioning, navigation,
and timing services, and serves as an essential space-time infrastructure for the country.
3.1.1 Composition of the Beidou System

The GNSS (Global Navigation Satellite System) refers to a global navigation satellite system
that uses artificial satellites as navigation stations in a stellar radio navigation system. The Beidou
system is a typical example of a GNSS positioning system [19].

As shown in Figure 3, the BDS primarily consists of a ground control segment, a space
segment, and a user terminal segment.



Figure 3 The Composition of the Beidou Navigation Satellite System
(1) Space Segment

Since the intensive launch of Beidou-3 satellites started in 2017, the space segment of
Beidou-3 consists of 30 satellites. This includes 3 geostationary orbit (GEO) satellites, 24 medium
earth orbit (MEO) satellites, and 3 inclined geosynchronous orbit (IGSO) satellites [20].
(2) Ground Control Segment

The ground control segment is composed of the main control station, time-space
synchronization injection stations, and monitoring stations. The main control station is responsible
for the operation management and control of the system. It collects observational data from
various monitoring stations, processes it to generate wide-area differential information, integrity
information, and satellite navigation messages, and then instructs the injection stations to transmit
the information. The injection stations' function is to transmit signals to the satellites, manage and
control the satellites, and after receiving instructions from the main control station, relay the
information to the satellites. The monitoring stations' function is to continuously track and monitor
the navigation satellites in real time, determine their orbits, receive signals from the satellites, and
send them to the main control station. They also provide observation data for time synchronization
[21].
(3) User Terminal Segment

The user terminal segment refers to the terminal users of the Beidou Navigation System,
other compatible terminal users of different navigation systems, and the related application service
systems. Currently, the Beidou-3 system provides a variety of services, including navigation,
positioning, timing, short message communication, satellite-based augmentation, ground-based
augmentation, international search and rescue, and precise point positioning. The global
positioning accuracy is better than 10 meters, timing accuracy is better than 20 nanoseconds,
speed measurement accuracy is better than 0.2 meters/second, and the global service availability
exceeds 99%. Furthermore, its performance is better in the Asia-Pacific region [22].
3.1.2 Positioning Principle of the Beidou System

Space station part

User Terminal

Ground control part



The positioning principle of the Beidou Satellite Navigation System is based on the
trilateration measurement method. The core idea of this method is to determine the position of a
target point using the positional information of three spheres. Specifically, three satellites serve as
the centers of the spheres, and the distances from these satellites to the user receiver are used as
the radii. These three spheres will intersect at two points. Assuming the coordinates of the three
satellites are known as A, B, and C, the distances from the satellites to the user receiver are r1, r2,
and r3, respectively, and the coordinates of the user receiver are denoted as P. The following
equations can then be established, as shown in Equation 10:

�1
2 = (�1 − ��)2 + (�1 − ��)2 + (�1 − ��)2

�2
2 = (�2 − ��)2 + (�2 − ��)2 + (�2 − ��)2

�3
2 = (�3 − ��)2 + (�3 − ��)2 + (�3 − ��)2

(10)

The distance R from the satellite to the user receiver can be calculated based on the propagation
speed of radio waves in the atmosphere, denoted as c, and the time taken for the radio wave to
travel from transmission to reception, as shown in Equation 11:

Ri = c ⋅ Δt ，i = 1,2,3 (11)
Using Equations (10) and (11), the coordinates of the two intersection points can be determined.
Based on engineering experience, the point that does not coincide with the Earth's surface can be
easily excluded. The remaining point is the true position of the user receiver. This forms the
fundamental principle of the Beidou positioning system. However, in practical calculations,
factors such as satellite clock errors must also be considered. Therefore, the positional information
of an additional satellite is required to further complete the position calculation.
3.2 NMEA-0183 Communication Protocol

NMEA stands for the National Marine Electronics Association in the United States. The
NMEA-0183 protocol is currently the most widely used protocol in satellite positioning receivers.
The NMEA-0183 protocol is based on ASCII code and defines numerous sentences. Among these,
the most commonly used and widely compatible ones include GGA (Global Positioning System
Fix Data) for GPS positioning information, RMC (Recommended Minimum Specific
GPS/TRANSIT Data) for recommended positioning information, and VTG (Track Made Good
and Ground Speed) for ground speed information [23]. Taking "RMC" data as an example, its
specific format and details are as follows:

$GPRMC,020550.c00,A,2813.9891299,N,11252.6278784,E,0.033,315.7,161117,0.0,E,A*30
The specific format and explanation are shown in Table 1:

Table 1: Explanation of Positioning Information Data Sentences
ID Example Description
1 $GPRMC Start symbol + message type
2 020550.00 UTC time
3 A Positioning status: A – valid positioning, V – invalid positioning
4 2813.9891299 Latitude: 28°13.99891299', with the range of 0° to 90°. The integer part

represents minutes, and the remaining part represents degrees.
5 N Latitude direction: N – North, S – South
6 11252.6278784 Longitude: 112°52.6278784', with the range of 0° to 180°. The integer

part represents minutes, and the remaining part represents degrees.
7 E Longitude direction: E – East, W – West



8 0.033 Ground speed, unit: knots (N)
9 315.7 Ground course, with true north as the reference, the angle in the

clockwise direction to the course. (Range: 0° ~ 360°)
10 161117 Date: day, month, year
11 0.0 Magnetic declination, unit: degrees
12 E Magnetic declination direction
13 A Mode indication: N = data invalid; A = autonomous positioning; E =

estimated; D = differential; M = manual input
14 30 Checksum

3.3 Kalman Filtering Algorithm
Kalman filtering is an algorithm that provides an optimal estimate of the system state based

on the state-space representation of a linear system, using system inputs and output observation
data [24]. Kalman filtering does not require the assumption that both the signal and noise are
stationary. As long as the measurement variance is known, it can process a series of noisy
observations and provide an estimate of the true signal with minimal error. Kalman filtering is a
recursive process that continuously updates and corrects the data during operation. It does not
require storing large amounts of observed data. During its calculation, it only needs the previous
estimate and the most recent observation value to predict the current state, allowing for real-time
state estimation with fast response times. Therefore, Kalman filtering is widely used in the
dynamic data processing of GPS and Beidou satellite positioning. When control input is not
considered, the system model is as shown in Equation (12):

�� = ���−1 + ��−1
Zk = HXk + Vk

(12)

In Equation (12), X is the system state vector, Z is the observation vector, A is the state
transition matrix, and H is the observation matrix. W and V represent the process noise and
measurement noise, respectively, with covariance matrices Q and R, both of which are zero-mean
white noise, as shown in Equation (13):

E(Wk) = 0, COV(Wk) = E(WkWk
T) = Q

E(Vk) = 0, COV(Vk) = E(VkVk
T) = R

(13)

The recursive process is as follows:
State prediction process:

���� = ���−1�
��� = ����� + �

(14)

Measurement update process:
�� = �����(������ + �)−1

��� = ���� + ��(�� − �����)
�� = (� − ���)���

(15)

Where Xₖ represents the posterior state estimate at time k, Xₖ₋₁ represents the prior state
estimate at time k, Pₖ represents the posterior estimate covariance at time k, Pₖ₋₁ represents the
prior estimate covariance at time k, and Kₖ represents the Kalman gain.
3.4 Semi-Physical Simulation Analysis Based on Kalman Filtering
3.4.1 Building the RTK System



RTK (Real-Time Kinematic) technology achieves centimeter-level high-precision positioning
through differential correction messages (RTCM) broadcast by the reference station [25]. The
reference station receiver broadcasts differential data (including the type, location, and observation
data of the reference station receiver), while the rover station receiver receives the differential data
and satellite signals in real-time for calculation. When the rover station receiver eliminates the
errors in the observation data and "fixes" the integer number of carrier phase observations,
obtaining centimeter-level position information, the RTK fixed solution is achieved.

Firstly, two Beidou modules are used with RTK (Real-Time Kinematic) technology to obtain
high-precision positioning, and the obtained data is set as the true value. The HI600D is used as
the reference station, and the HI600R as the rover station, thus building a minimal RTK system.
Both modules are connected to a computer, with the rover station's positioning module outputting
RTK results. The serial port debugging software is used to read and save the data. The connection
is shown in Figure 4 below:

Figure 4: Minimal RTK System
3.4.2 Semi-Physical Simulation Analysis

The simulation analysis is divided into two groups: one for static data and one for dynamic
data. In the static data group, the data obtained using RTK technology is set as the true value. The
simulation time is 540 seconds with a sampling interval of 1 second, and the true system values
are [24.3055565; 109.3724454]. The Kalman filtering algorithm is used to filter the original
Beidou positioning observation data. Figure 5(a) shows the comparison of the latitude position
variation of the static object obtained using Kalman filtering with the original and true data. Figure
5(b) shows the comparison of the longitude position variation of the static object obtained using
Kalman filtering with the original and true data. In the dynamic data group, the simulation time is
450 seconds with a sampling interval of 1 second. Figure 6(a) shows the comparison of the
latitude position variation of the dynamic object obtained using Kalman filtering with the original
data. Figure 6(b) shows the comparison of the longitude position variation of the dynamic object
obtained using Kalman filtering with the original data.
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(a) (b)
Figure 5: Comparison of Static Kalman Filtering with Original and True Data

Figure 6: Comparison of Dynamic Kalman Filtering with Original and True Data
From the simulation results, in the static data, the positioning data processed by Kalman

filtering is noticeably smoother than the original measurement data, converging more quickly and
getting closer to the true values obtained using the RTK algorithm. In the dynamic data, the data
processed by Kalman filtering also shows significantly less fluctuation compared to the original
data. The simulation analysis results show that the Kalman filtering method can effectively
improve the positioning accuracy and convergence speed.
4. Study of Combined Positioning Algorithm Based on Beidou and Vision Systems

In general, combined navigation technology typically refers to the use of two or more
navigation systems with complementary measurement advantages to measure the same
information source and achieve higher navigation accuracy. One navigation system usually
provides short-term, high-precision information, while the other provides long-term, high-stability
information. Compared to a single navigation system, the combined navigation system offers
greater advantages in navigation accuracy.
4.1 Research on Multi-Sensor Information Data Fusion Technology

Multi-sensor fusion technology refers to the analysis, estimation, and integration of
information and data from multiple sensors or signal sources using specific data fusion algorithms,
in order to make the required decisions and estimates. Multi-sensor fusion technology combines
and optimizes the information obtained by various sensors about the same target features through
multi-level and multi-space complementary processing, ultimately generating reliable information
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Sampling time Sampling time
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about the observed target features [26]. The general structure of multi-sensor information data
fusion is shown in Figure 7.

Figure 7: Multi-Sensor Information Fusion Structure
4.2 Common Algorithms for Data Fusion Technology

For multi-sensor systems, due to the diversity and complexity of information, the basic
requirements for information fusion algorithms are their robustness and parallel processing
capability. Other requirements include algorithm speed and accuracy. In general, nonlinear
mathematical methods that have fault tolerance, adaptability, associative memory, and parallel
processing ability can all be used as fusion methods [27]. The following are several commonly used
data fusion algorithms:
(1) Weighted Averaging Method

The weighted averaging method is the simplest and most intuitive method in signal-level
fusion. The specific approach is to take the data collected by a set of sensors and compute a
weighted average, using the result of the weighted average as the final output fusion value. This
method directly operates on the data sources.
(2) Kalman Filtering Method

This method is mainly used to fuse redundant data from low-level real-time dynamic
multi-sensors. It uses the statistical characteristics of the measurement model to recursively
determine the optimal fusion and data estimation in a statistical sense. If the system has a linear
dynamic model, and the errors of the system and sensors follow a Gaussian white noise model,
Kalman filtering will provide the unique optimal estimation for fused data in a statistical sense.
The recursive nature of Kalman filtering allows the system to process data without requiring large
amounts of data storage and computation.
(3) Multi-Bayesian Estimation Method

Each sensor is treated as a Bayesian estimator, and the individual objects' associated
probability distributions are combined into a joint posterior probability distribution function. By
minimizing the likelihood function of the joint distribution function, the final fused value of
multi-sensor information is provided. The fused information, along with a prior model of the
environment, is used to provide a feature description of the entire environment.
(4) Artificial Neural Network Method
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Neural networks have strong fault tolerance, self-learning, self-organization, and
self-adaptive capabilities, and can simulate complex nonlinear mappings. These characteristics,
along with their powerful nonlinear processing capabilities, make neural networks well-suited to
meet the requirements of multi-sensor data fusion technology. In a multi-sensor system, the
environmental information provided by each information source has a certain degree of
uncertainty. The fusion process of these uncertain pieces of information is essentially an uncertain
reasoning process. Neural networks determine classification standards based on the similarity of
the samples received by the current system. This determination method is mainly reflected in the
network's weight distribution. Learning algorithms can also be used to acquire knowledge,
forming an uncertainty reasoning mechanism. By utilizing the signal processing capability and
automatic reasoning function of neural networks, multi-sensor data fusion can be achieved.
4.3 Overall Design of the Integrated Navigation System

There are many types of integrated navigation methods, such as the typical combination of
inertial navigation and GPS (INS/GPS), GPS and LiDAR integration, GPS and vision integration,
etc. By leveraging the joint perception of multiple sensors, integrated navigation systems can
provide more accurate position or velocity information, enhanced reliability, and lower costs
compared to traditional single-sensor navigation systems. As a result, they are gaining increasing
popularity across various fields. This paper adopts a combination of machine vision and BDS
navigation, analyzing the advantages and disadvantages of using these two navigation methods.
The integrated navigation system, compared to the original single-system navigation, shows
significant improvements in stability, accuracy, and performance. The overall design is shown in
Figure 8.



Figure 8: Overall Structure of the Integrated Navigation System
4.4 Data Calibration for Integrated Navigation System
4.4.1 Gauss-Krüger Projection

Since BDS uses a three-dimensional Beidou coordinate system, directly utilizing this
coordinate system is not conducive to the subsequent design of the navigation system. Therefore,
the Gauss-Krüger projection method is employed for coordinate system transformation. The
Gauss-Krüger projection is a conformal projection between the Earth's ellipsoid and a plane. The
basic concept is as follows: A cylindrical projection is tangent to a meridian on the Earth's
ellipsoid, with the central axis of the cylindrical projection coinciding with the equatorial plane.
The Earth's ellipsoid is conditionally projected onto the cylindrical surface of the ellipsoid. As
shown in Figure 9.
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Figure 9: Gauss Projection Diagram
The characteristic of the Gauss projection is that there is no angular distortion, and the shape

changes are minimal. The central meridian does not cause any distortion, but the further away
from the central meridian, the greater the distortion. To limit this distortion, the Gauss-Krüger
projection method employs a zonal projection. Zonal projections are divided into 3° and 6° bands,
where the central meridian is used as the starting point, and each band is numbered sequentially
with a fixed longitudinal difference from west to east, as shown in Figure 10.

Figure 10. Schematic diagram of projection zone division.
The current zone can be determined based on the known longitude. For example, the longitude of
Guangxi University is approximately 108.29°, which places it in Zone 19 when divided by 6°
bands and in Zone 36 when divided by 3° bands. Given the known latitude and longitude
coordinates (L, B), the coordinates (x, y) in the Gauss plane rectangular coordinate system can be
calculated using the direct Gauss projection formula (16).
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In the formula:�'' = L − L0，L0is the central meridian longitude; N = a(1 − e2 sin2 B )−1
2，N is the

Equatorial

CentralM
eridian



radius of curvature in the meridian plane, a is the length of the Earth's ellipsoid semi-major axis,

and e is the first eccentricity of the ellipsoid；t = tan B，�2 = �'2 cos2 �，ρ'' = 180
π

∗ 3600，e’is

the second eccentricity of the Earth; X is the meridian arc length, which can be calculated using a
practical formula X = 111132.9525B − 16038.5087 sin 2B + 16.8326 sin 4B − 0.022 sin 6B
calculated.

Figure 11 shows the latitude and longitude coordinates obtained directly from BDS based on
the Beidou coordinate system, while Figure 12 shows the positioning information in the Gauss
plane coordinate system after Gauss projection.

Figure 11. Latitude and longitude information in the Beidou coordinate system.

Figure 12: Positioning information in the Gauss plane coordinate system
4.4.2 Unified Visual Coordinate System and Plane Coordinate System

The transformation of the visual coordinate system involves the conversion between four



coordinate systems: the world coordinate system, the camera coordinate system, the image
coordinate system, and the pixel coordinate system. The world coordinate system describes the
position of the camera and serves as a reference for the position of the target object. The origin can
be set according to the design requirements. The camera coordinate system has its origin at the
optical center of the camera, with the Z-axis parallel to the camera’s optical axis, i.e., the direction
in which the camera’s lens is pointing. The image coordinate system’s units are typically in
millimeters, with the origin at the intersection of the image diagonal, i.e., the center of the image.
The pixel coordinate system’s unit is pixels, with the origin at the top-left corner of the image. The
transformation between the pixel coordinate system and the world coordinate system is achieved
through the camera's intrinsic and extrinsic parameters, which can be obtained via camera
calibration using MATLAB.

The robot's position at time k is obtained by subtracting the combined position error from the
position data obtained by the BDS at time k. The combined position error is calculated by
subtracting the position data obtained by the BDS at time k-1 from the target point on the
navigation line extracted by the vision system at time k-1. The unification of the visual coordinate
system and the plane coordinate system is completed through the following steps: First, the data
obtained from the Beidou positioning system is converted from the Beidou coordinate system to
the Gauss plane coordinate system. In the plane coordinate system, the X-axis is positive toward
the north and the Y-axis is positive toward the east, which serves as the reference coordinate
system for unifying the two coordinate systems. The robot's coordinates are set as (�0, �0)。The
projection of the camera's front center onto the ground is taken as the origin of the visual
coordinate system. The positive direction of the x-axis is set along the robot's forward direction,
and the y-axis is perpendicular to the x-axis and points to the right. The reference point extracted
through the visual algorithm is taken as the target point W, with its coordinates in the visual
coordinate system denoted as (��1, ��1)，The coordinates of the target point W in the plane
coordinate system are denoted as (��, ��)，As shown in Figure 13, the unification of the visual
coordinate system and the plane coordinate system can be completed using the following equation
(16), and the coordinates of the target point W in the plane coordinate system can be obtained.

Figure 13. A schematic diagram of the coordinate system

Plane coordinate system
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(16)

4.5 Simulation Experiment and Analysis
To verify the effectiveness of the combined navigation algorithm using the visual system and

the Beidou system, a semi-physical simulation analysis of the fusion algorithm was conducted.
The experimental procedure is as follows: In the Nanning Flower Park, a segment of
approximately 20 meters in length was selected. First, the machine vision system was used to
extract the navigation line. Then, the RTK environment was set up, and the robot traveled along
the navigation line at a speed of 0.5 meters per second. The measured path data was used as the
baseline, which was compared with the fusion data. Afterward, the RTK environment was turned
off, and the BDS system was used independently. The robot continued to travel along the
navigation line at the same speed of 0.5 meters per second, recording data. Finally, the fusion
algorithm was applied, and a total of three sets of data were recorded. One set was selected for
analysis, and the result is shown in Figure 14.

As seen in Figure 14, the data obtained from the BDS system alone, even after filtering, still
shows a significant error compared to the baseline data. However, the positioning data obtained
using the fusion algorithm is much closer to the baseline data compared to the positioning data
from the single sensor navigation. This indicates that the precision of the navigation system is
significantly improved when using the fusion algorithm.

Figure 14: Semi-physical simulation result of the experiment.

BDS Data
Fusion Data
RTK precise data



5.Conclusion
This study proposed and validated a combined navigation algorithm that integrates the

Beidou satellite positioning system with a machine vision system, addressing the limitations of
individual sensors and demonstrating significant improvements in navigation accuracy and
robustness for garden robots. Experimental results from semi-physical simulations in a real-world
environment confirmed that the fusion algorithm achieved higher precision compared to
standalone BDS or vision systems, highlighting its potential for practical applications. However,
future work should focus on optimizing computational efficiency, enhancing adaptability to
diverse and complex environments, and conducting extensive testing over longer distances and
varied terrains to further validate the algorithm's performance.
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