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Abstract: In the context of complex and ever-changing communication environments, frequency
selection in frequency-hopping spread spectrum communication systems has become a crucial aspect for
enhancing system performance. This paper innovatively puts forward a frequency selection strategy for
frequency-hopping spread spectrum communication systems integrated with deep learning. A deep
neural network model is constructed, where the Long Short-Term Memory network (LSTM) is
employed to capture the sequential characteristics of the communication environment, and combined
with the Convolutional Neural Network (CNN) to extract the spatial features of interference signals,
fully excavating the hidden information within the data. The model training is based on historical
communication data, covering diverse information such as different interference types, intensities, and
spectrum utilization rates in corresponding periods. In practical applications, the currently collected
environmental parameters in real time are input into the well-trained model, which promptly outputs
optimized frequency selection schemes. Verified by a large number of simulation experiments,
compared with the traditional frequency selection strategy based on static spectrum sensing, this strategy
can reduce the probability of communication interruption by approximately 35% in scenarios with
strong interference, increase the average spectrum utilization rate by 20%, and decrease the bit error rate
to 40% of the original value. It effectively guarantees the stability and high efficiency of communication
and provides valuable technical support for the reliable operation of modern communication systems.
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I. INTRODUCTION
With the rapid development of information technology, the penetration of wireless communication in

various fields has been deepening day by day, and people's requirements for communication quality and
reliability have reached an unprecedented level. As an important wireless communication technology, the
frequency-hopping spread spectrum communication system plays an indispensable role in numerous
critical scenarios such as military communication, emergency rescue, and mobile communication, relying
on its outstanding anti-interference ability and flexibility in spectrum utilization[1,2].

Traditional frequency-hopping spread spectrum communication systems usually rely on static
spectrum sensing technology for frequency selection. This method can still maintain basic
communication needs in relatively simple and stable communication environments. However, in reality,
communication scenarios are becoming increasingly complex and changeable. Interference sources are
not only diverse in types, including co-channel interference, adjacent channel interference, impulse
interference, etc., but also their intensities and occurrence time patterns are elusive[3]. Against this
backdrop, the limitations of static spectrum sensing technology have gradually emerged. It is difficult for
it to adapt to the dynamically changing interference environment in real time and accurately, often
resulting in problems such as an increased probability of communication interruption, low spectrum
utilization rate, and a soaring bit error rate, which seriously restricts the full play of the advantages of the
frequency-hopping spread spectrum communication system.

In recent years, deep learning technology has achieved remarkable achievements in fields such as
image recognition and speech processing[4,5]. Its powerful automatic feature extraction and complex
pattern recognition capabilities have opened up new avenues for solving many traditional problems. In
view of this, integrating deep learning into the frequency selection process of frequency-hopping spread
spectrum communication systems has become a highly promising research direction. By constructing a
deep neural network model, such as the Long Short-Term Memory network (LSTM), it is possible to
effectively capture the dynamic characteristics of the communication environment as it evolves over time
and grasp the trends of interference changes. Meanwhile, combined with the Convolutional Neural



Network (CNN) to conduct fine extraction of the spatial features of interference signals, a comprehensive
understanding of complex communication scenarios can be achieved[6,7,8].

This paper focuses on this cutting-edge interdisciplinary field and elaborates in detail on the frequency
selection strategy for frequency-hopping spread spectrum communication systems integrated with deep
learning[9,10]. Through in-depth discussions on model construction, training methods, and the evaluation
of practical application effects, it aims to break through the bottlenecks of traditional frequency selection
technologies, provide innovative solutions for the stable and efficient operation of frequency-hopping
spread spectrum communication systems in complex environments, and promote wireless communication
technology to a new level. The subsequent chapters will successively conduct in-depth research and
analysis on each key aspect of this strategy.

II. RESEARCH STATUS
A. Research Status of Frequency-Hopping Spread Spectrum Communication Systems

Frequency-hopping spread spectrum communication systems hold a pivotal position in the realm of
wireless communication. In its nascent stage, military communication was its principal domain. Amid the
intense electromagnetic interference on the battlefield, it could display its prowess to the fullest. By
precisely manipulating the carrier center frequency through pseudo-random code sequences, it enabled
the frequency to hop rapidly and irregularly within a given frequency band, thereby achieving spectrum
expansion. This ingenious design rendered the enemy's interference futile and made it arduous to
intercept communication content, safeguarding the transmission of military commands and intelligence
and playing a significant role in numerous crucial battles.

As the era of peace dawned, civilian communication burgeoned, and the application of frequency-
hopping spread spectrum technology became widespread. Take Bluetooth as an example. When using
Bluetooth headphones to listen to music or transfer files in daily life, the frequency-hopping spread
spectrum technology wards off co-channel interference, ensuring the smooth flow of audio and sparing
users from the vexation of stuttering and noise. Wi-Fi also reaps the benefits. Indoor multipath fading has
long been a headache for traditional communication, yet it guides signals to deftly circumvent signal
attenuation areas and seek the optimal paths, maintaining stable network connections and fulfilling
people's demands for high-speed Internet access.

Nevertheless, the current communication domain is undergoing profound transformations, and the
environment has become increasingly complex. On the one hand, with the large-scale deployment of 5G,
base stations are densely distributed, giving rise to a severe problem of adjacent channel interference. The
narrow intervals between frequency bands cause signals to interfere with one another, severely impairing
the quality of communication. On the other hand, electronic devices such as microwave ovens and
cordless telephones generate sudden pulse interference during operation, which is almost impossible to
guard against. Traditional frequency-hopping spread spectrum systems rely on static spectrum sensing,
which merely measures the current idle frequency bands and interference intensities and allocates
frequencies according to fixed rules, unable to fathom the dynamic changes of interference. This leads to
frequent communication interruptions, a soaring bit error rate, and a significant deterioration in user
experience. To break through this predicament, researchers worldwide are focusing on exploring
intelligent frequency selection strategies, hoping to rejuvenate frequency-hopping spread spectrum
communication systems.
B. Research Status of the Application of Deep Learning in Frequency-Hopping Spread Spectrum
Communication Systems
The rise of deep learning has injected vitality into the innovation of frequency-hopping spread

spectrum communication. Currently, researchers are boldly innovating and integrating multiple deep
learning architectures into it. The Long Short-Term Memory network (LSTM) excels in handling time-
series data and undertakes the crucial task of capturing the dynamic changes in the communication
environment. Its unique "memory unit" can retrospect historical communication periods, delving deeply
into the fluctuations of interference and the patterns of spectrum utilization. Through learning from vast
amounts of data, it can accurately predict the suitable frequency-hopping frequencies in the future,



breaking the limitations of traditional methods in utilizing sequential information and opening the door to
intelligent frequency regulation.

The Convolutional Neural Network (CNN) concentrates on the spatial dimension of interference
signals. By likening the communication frequency band to an image and relying on the powerful
extraction ability of the convolutional layer, it can precisely identify the interference "patterns" at
different positions and with different shapes, and draw a detailed "interference map"[11,12]. In this way,
frequency selection decisions can avoid the "minefields" of strong interference, ensuring that signals can
travel smoothly in pure frequency bands.

Some teams have gone a step further by constructing composite models that integrate CNN and LSTM.
In simulation experiments, the synergistic advantages of these models are fully demonstrated. Compared
with traditional static sensing strategies, their anti-interference performance is significantly enhanced, the
bit error rate is effectively reduced in complex interference scenarios, and the transmission accuracy is
greatly improved. Meanwhile, remarkable achievements have been made in optimizing spectrum
utilization, as they can tap into idle frequency bands and conduct meticulous allocation of spectrum
resources.

However, the path forward is fraught with obstacles. It is extremely difficult to obtain model training
data. The collection in real environments incurs high costs, imposes stringent requirements on the
accuracy and stability of equipment, and the annotation process is cumbersome, demanding a great deal
of effort from professionals. Even so, the data can hardly cover all interference scenarios, resulting in
limited generalization ability of the models. Moreover, the real communication environment is complex
and changeable. Once the models are deployed, they often struggle to adapt, leading to a decline in
performance. Additionally, it is challenging to achieve seamless compatibility between deep learning
models and the existing massive communication infrastructure. The large-scale transformation entails
high costs and unpredictable risks. Subsequent research needs to overcome these difficulties to promote
the practical application of deep learning and usher in a new chapter in communication.

III. THEORETICAL BASIS

A. CNN for Extracting Spatial Features
The convolutional layer of the CNN consists of multiple convolutional kernels. Let the convolutional

kernel Kl (where l represents the l-th convolutional kernel, and assume there are L convolutional kernels
in total) have a size of k × k (for example, 3 × 3), with a stride s (assume s = 1). For the frequency band
matrix F, the convolutional computation at the position (i, j) is as follows:
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Here, bl is the bias term corresponding to the l-th convolutional kernel. Suppose the convolutional
kernel K1 is:

0.1 0.2 0.1
0.3 0.4 0.3
0.1 0.2 0.1

When computing the convolutional value at the position (1, 1) of the frequency band matrix F
(assuming b1 = 0.1), if F11 = 10 dBm, F12 = 12 dBm, F21= 11 dBm, etc., we have:
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By sliding the convolutional kernels over the frequency band matrix, multiple feature maps {Gl} are
generated.

Application of Activation Function: The ReLU activation function is adopted for the feature maps
after convolution:
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If �11
1 = 15.9, then after applying the ReLU activation function, R(�11

1 ) = max(0, 15.9) = 15.9. Thus,
the set of activated feature maps {Rl} is obtained.

Pooling Layer Computation: Taking the max pooling as an example, let the pooling window size be p
× p (for example, 2 × 2), and the stride be q (assume q = 2). The pooling computation at the position (i, j)
is as follows:
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For instance, when performing max pooling computation at the position (1, 1) for the activated feature
map R1, if R11

1 = 15.9, R12
1 = 14.5, R21

1 = 16.2, R22
1 = 13.8, then:
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= max 15.9,14.5,16.2,13.8
= 16.2

After pooling, the set of pooled feature maps {Pl} is obtained. These feature maps are then flattened
and concatenated into a one-dimensional vector VCNN.
B. LSTM for Capturing Sequential Features

Input Gate Computation: The LSTM unit receives the normalized environmental parameters ��� at the
current moment and the one-dimensional vector VCNN output by the CNN (by concatenating them into a
new vector [���, VCNN]), see Fig. 1. The input gate controls the degree to which information flows into the
memory unit, and its computational formula is as follows:

�� = � �� ⋅ ℎ�−1, ���, ���� + ��

Here, � is the sigmoid function, �� is the input weight matrix (assume its dimension is D × (N + M),
where D is the dimension of the hidden layer, N is the dimension of ���, and M is the dimension of VCNN),
and b_i is the bias term. Suppose at the current moment t = 1, the hidden state of the previous moment ht-1
= [0.2, 0.3, ... , 0.4] (with dimension D), ��1 = [0.5, 0.6, ... , 0.7] (with dimension N), and VCNN = [v1,
v2, ... , vM], then:

�1 = � �� ⋅ 0.2,0.3, ⋯, 0.4 , 0.5,0.6, ⋯, 0.7 , �1, �2, ⋯, �� + ��

After computation, the value of the input gate is obtained, for example, i1 = [0.6, 0.7, ... , 0.8], which
represents the probability of each dimension of information entering the memory unit.

Forget Gate Computation: The forget gate determines the proportion of the memory information
retained by the memory unit from the previous moment:

�� = � �� ⋅ ℎ�−1, ���, ���� + ��

Here, �� is the forget weight matrix, which is similar to the input weight matrix, and �� is the
corresponding bias term. Taking t = 1 as an example, assume that f1 = [0.4, 0.5, ... , 0.6] is obtained,
which represents the probability of retaining each dimension of information in the memory unit from the
previous moment.

Memory Unit Update: Firstly, the candidate memory content is generated:

��� = tanh �� ⋅ ℎ�−1, ���, ���� + ��

Here, �� is the candidate memory weight matrix, and �� is the bias term. Suppose that ��� = [0.9,
1.0, ... , 0.8] is calculated. Then, the memory unit state is updated as follows:

�� = �� ∗ ��−1 + �� ∗ ���



Here, “*” represents element-wise multiplication, and tanh is the hyperbolic tangent function. Suppose
the memory unit state of the previous moment Ct 1= [0.3, 0.4, ... , 0.5], then:

�1 = 0.4,0.5, ⋯, 0.6 ∗ 0.3,0.4, ⋯, 0.5 + 0.6,0.7, ⋯, 0.8 ∗ 0.9,1.0, ⋯, 0.8
Thus, the updated memory unit state C1 is obtained.
Output Gate Computation and Hidden State Output: The output gate determines the output value at the

current moment:

�� = � �� ⋅ ℎ�−1, ���, ���� + ��

Finally, the hidden state at the current moment is obtained as follows:
ℎ� = �� ∗ tanh ��

Taking t = 1 as an example, suppose that o1 = [0.7, 0.8, ... , 0.9] and C1 = [0.7, 0.8, ... , 0.9] are
calculated, then:

ℎ1 = 0.7,0.8, ⋯, 0.9 ∗ tanh 0.7,0.8, ⋯, 0.9
Thus, the hidden state h1 at the current moment is obtained.

Fig. 1. LSTM model structure

IV. EXPERIMENTAL SECTION

A. Dataset
This experiment employed a comprehensive communication dataset with diverse sources, including

data generated from simulated communication scenarios and those collected from actual communication
environments, ensuring data diversity and authenticity. Specifically, it covered the following:

1) Simulated Data: Professional communication simulation software was utilized to generate
communication data under different interference types (such as Gaussian white noise interference,
multipath fading interference, impulse interference, etc.), simulating a variety of complex electromagnetic
environments. Within different interference intensities (ranging from weak to strong, with an interference
power span of -20 dBm to 20 dBm) and various frequency band ranges (encompassing common civilian
communication frequency bands and some dedicated frequency bands, like 2.4 GHz 2.5 GHz, 5.1 GHz
5.3 GHz, etc.), a vast amount of sequential data was produced, totaling approximately 500,000 samples.
Each sample contained crucial communication environment parameters such as interference intensity at a
specific moment, spectrum occupancy, and signal-to-noise ratio, which were used to train the deep
learning model.

2) Actually Collected Data: Communication monitoring devices were deployed in different
geographical locations such as urban central areas, suburbs, and industrial parks to collect data during
both peak and off-peak communication periods in real scenarios, as well as interference data generated by
surrounding various electronic devices (such as base stations, microwave ovens, radio stations, etc.).
After preprocessing and screening, around 100,000 valid samples were obtained, which were used for



model validation and optimization, ensuring that the model could adapt to the complex and ever-changing
real communication environment.
B. Experimental Setup

1) Model Parameter Configuration: LSTM Part:
The number of hidden layer neurons was set to 128, and the input dimension was dynamically adjusted

according to the total dimension after concatenating the CNN output vector. The weight matrices of the
forget gate, input gate, output gate, and memory unit were initialized with a random normal distribution,
and the bias terms were initialized as zero vectors. The Adam optimizer was adopted, with the initial
learning rate set to 0.001 to balance the convergence speed and accuracy of model training.

2) CNN Part:
The convolutional layer was configured with 3 different-sized convolutional kernels (3×3, 5×5, 7×7),

with 32 kernels of each size. The stride was set to 1, and the padding mode was SAME to ensure that the
output feature map size was consistent with the input frequency band matrix. The ReLU activation
function was employed, and the max pooling layer was selected, with a window size of 2×2 and a stride
of 2. Through multiple convolutional and pooling operations, the spatial features of the frequency band
were gradually extracted. The fully connected layer at the end of the model mapped the final hidden state
output by the LSTM to the dimension consistent with the number of available frequency hopping
frequencies, providing a decision basis for subsequent frequency selection.

3) Comparison Methods:
The proposed deep learning-integrated strategy was compared with the following two traditional

frequency selection methods:
Based on Static Spectrum Sensing (SSS): Frequency hopping frequencies were selected according to

preset fixed rules based on real-time measurement of the idle status of the frequency band and
interference intensity. This is a commonly used traditional method in current frequency hopping spread
spectrum communication systems.

Based on Simple Statistical Analysis (SSA): Frequency selection strategies were formulated based on
simple statistics of historical communication data, such as average interference intensity and frequency
band occupancy probability, without involving complex deep learning models.

4) Experimental Environment Setup:
A high-performance computing cluster was utilized to simulate a complex communication

environment, enabling multi-node parallel data processing and model training to ensure the efficiency and
repeatability of the experiment. The cluster configuration was as follows: each node was equipped with 2
Intel Xeon Gold 6240 CPUs, with a memory of 192 GB, and the GPU selected was the NVIDIA Tesla
V100, with 32 GB of video memory, meeting the large-scale training requirements of deep learning
models.
C. Experimental Results

Through extensive testing of different methods in the above experimental environment, with
communication interruption probability, spectrum utilization rate, and bit error rate as the main evaluation
metrics, the following results were obtained:



Fig. 2. Comparison of Communication Interruption Probabilities under Different Interference Intensities
(Unit: %)

A detailed look at the data in Fig. 2 clearly shows the performance of each method in terms of
communication interruption probability under different interference intensity scenarios. When the
interference intensity was at a relatively low level, such as -20 dBm, the communication interruption
probability of the SSS-based method was 1.2%, that of the SSA-based method was 1.0%, while that of
the deep learning-integrated strategy was only 0.3%, already demonstrating a certain advantage. As the
interference intensity gradually increased to -10 dBm, the communication interruption probability of the
SSS-based method climbed to 3.5%, that of the SSA-based method rose to 3.0%, and the deep learning-
integrated strategy remained at 1.2%, further expanding the advantage. When the interference intensity
reached 0 dBm, the disadvantages of the traditional methods became more pronounced. The interruption
probability of the SSS-based method was as high as 8.2%, that of the SSA-based method was 7.5%, while
the deep learning-integrated strategy could still control the interruption probability at 3.0%. Continuing to
increase the interference intensity to 10 dBm, the interruption probability of the SSS-based method
jumped to 15.6%, that of the SSA-based method was 14.0%, and the deep learning-integrated strategy
was 6.5%. Until the interference intensity reached the strongest level of 20 dBm, the communication
interruption probability of the SSS-based method was as high as 25.3%, that of the SSA-based method
was 22.0%, and the deep learning-integrated strategy was only 12.0%. It can be seen that as the
interference intensity increased, the communication interruption probabilities of all three methods rose,
but the deep learning-integrated strategy significantly outperformed the traditional methods under all
interference intensities.

TABLE I. COMPARISON OF SPECTRUM UTILIZATION RATES IN DIFFERENT FREQUENCY BAND RANGES
(UNIT: %)

Frequency
Band
Range
(GHz)

Based
on SSS
Method

Based
on SSA
Method

Deep
Learning-
Integrated
Strategy

2.4 - 2.5 45.2 48.0 55.6
5.1 - 5.3 38.5 40.5 46.8
Other
Frequency
Bands
(Composite)

32.0 34.0 40.2

An in-depth analysis of Table 1 reveals that in the tests of different frequency band ranges, the deep
learning-integrated strategy exhibited outstanding advantages in spectrum utilization rate. Taking the 2.4
2.5 GHz frequency band as an example, which is widely used in civilian communication, the spectrum
utilization rate of the SSS-based method was 45.2%, meaning that the proportion of effectively utilized
spectrum resources within this frequency band was 45.2%; the spectrum utilization rate of the SSA-based
method was 48.0%, slightly higher than that of the SSS-based method; while the spectrum utilization rate
of the deep learning-integrated strategy in this frequency band was as high as 55.6%, which was 10.4
percentage points higher than that of the SSS-based method. This indicates that this strategy could more
accurately identify the available resources within the frequency band and avoid interference areas, thus
greatly enhancing the capacity of the communication system in this frequency band. Looking at the 5.1
5.3 GHz frequency band, the spectrum utilization rate of the SSS-based method was 38.5%, that of the
SSA-based method was 40.5%, and the deep learning-integrated strategy was 46.8%, also significantly
better than the traditional methods. For the tests of other frequency bands (composite), which covered
some dedicated frequency bands and relatively complex frequency band environments, the spectrum
utilization rate of the SSS-based method was only 32.0%, that of the SSA-based method was 34.0%, and



the deep learning-integr of the deep learning-integrated strategy reached 40.2%, further proving its ability
to mine spectrum resources in complex frequency band conditions.

TABLE II. COMPARISON OF BIT ERROR RATES IN DIFFERENT COMMUNICATION SCENARIOS (UNIT: ×10-
3)

Communication
Scenario

Based on SSS Method Based on SSA Method Deep Learning-
Integrated Strategy

Urban Central Area 12.5 10.8 5.2
Suburbs 8.0 7.0 3.0
Industrial Park 18.0 16.0 8.5

Careful observation of the data in Table 2 shows that there were significant differences in the bit error
rates of each method in different communication scenarios. In the urban central area, due to the presence
of numerous high-rise buildings and dense electronic devices, the communication environment was
extremely complex. The bit error rate of the SSS-based method was as high as 12.5×10-3, which means
that for every 1000 bits of information transmitted, 12.5 error bits might appear; the bit error rate of the
SSA-based method was 10.8×10-3, although lower than that of the SSS-based method, it was still
relatively high; while the bit error rate of the deep learning-integrated strategy was only 5.2×10-3, which
was 7.3×10-3 lower than that of the SSS-based method, effectively ensuring the accuracy of information
transmission. In the suburbs, where communication interference was relatively less, the bit error rate of
the SSS-based method was 8.0×10-3, that of the SSA-based method was 7.0×10-3, and the deep learning-
integrated strategy had a bit error rate as low as 3.0×10-3, still showing an obvious advantage. When in
the industrial park scenario, a large number of industrial equipment generated strong electromagnetic
interference, and the bit error rate of the SSS-based method soared to 18.0×10-3, that of the SSA-based
method was 16.0×10-3, and the deep learning-integrated strategy had a bit error rate of 8.5×10-3, once
again highlighting its ability to ensure accurate information transmission in a complex interference
environment.
D. Ablation Experiment

To deeply explore the contributions of each component of the model to the overall performance, an
ablation experiment was carried out by removing the LSTM module and the CNN module respectively to
observe the performance changes:

TABLE III. COMPARISON OF ABLATION EXPERIMENT RESULTS

Model
Configuration

Communication
Interruption

Probability (%)

Spectrum
Utilization Rate

(%)

Bit Error Rate
(×10-3)

Full Model
(Integrating LSTM
and CNN)

3.0 46.8 3.0（

Removing LSTM
Module (Only
CNN)

8.0 38.0 7.0

Removing CNN
Module (Only
LSTM)

6.5 40.0 6.0

It can be seen from Table 3 that after removing the LSTM module, the communication interruption
probability increased sharply to 8.0%, which was 5 percentage points higher than that of the full model.



This indicates that in the face of a dynamically changing communication environment, without the
sequential features captured by the LSTM, the system had difficulty in adjusting the frequency selection
strategy in a timely manner based on historical communication information, resulting in a significant
increase in communication interruption situations; the spectrum utilization rate dropped to 38.0%, which
was 8.8 percentage points lower than that of the full model, indicating that without the assistance of the
LSTM, relying solely on the spatial features extracted by the CNN could not fully exploit the frequency
band resources, resulting in low spectrum utilization efficiency; the bit error rate increased to 7.0×10-3,
which was 4.0×10-3 higher than that of the full model, reflecting that the LSTM played a crucial role in
ensuring the accuracy of information transmission, and its absence would worsen the bit error situation.
After removing the CNN module, the performance indicators also deteriorated to varying degrees. The
communication interruption probability was 6.5%, which was 3.5 percentage points higher than that of
the full model, indicating that without the precisely extracted spatial distribution features of the
interference signals by the CNN, the system was more likely to jump into strong interference areas when
selecting frequencies, thus increasing the risk of communication interruption; the spectrum utilization rate
was 40.0%, which was 6.8 percentage points lower than that of the full model, meaning that relying
solely on the LSTM to process sequential information could not identify the available resources within
the frequency band as precisely as the integrated model, affecting the spectrum utilization effect; the bit
error rate was 6.0×10-3, which was 3.0×10-3 higher than that of the full model, indicating that the spatial
features extracted by the CNN helped to improve the quality of frequency selection and reduce the
occurrence of bit errors. The synergistic effect of the two ensured the excellent performance of the deep
learning-integrated strategy.

V. CONCLUSION

This paper focused on the frequency selection strategy of frequency-hopping spread spectrum
communication systems and innovatively integrated deep learning technology, leveraging LSTM and
CNN to cope with complex communication environments. The constructed comprehensive dataset
combined simulated and actual data to provide support for the model. Through rigorous experiments,
compared with the traditional methods based on static spectrum sensing (SSS) and simple statistical
analysis (SSA), the new strategy demonstrated outstanding advantages. In terms of communication
interruption probability, under the interference range of -20 dBm to 20 dBm, for example, at 20 dBm, it
was 13.3% lower than the SSS-based method and 10% lower than the SSA-based method, effectively
stabilizing the communication link; in terms of spectrum utilization rate, like in the 2.4 2.5 GHz
frequency band, it was 10.4% higher than the SSS-based method, mining more resources; and in different
scenarios, the bit error rate was also significantly reduced. In the urban central area, it was 7.3×10-3
lower than the SSS-based method, ensuring the accuracy of information. The ablation experiment
confirmed that both LSTM and CNN were indispensable. Removing the LSTM module led to an increase
in interruption probability and bit error rate and a decrease in spectrum utilization rate; the same was true
for removing the CNN module. The synergy of the two made the strategy excellent. In general, this
strategy broke through the traditional limitations, provided solutions to communication problems, was of
great significance to the development of communication, and had broad application prospects in the
future.
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