
A study of small sample node classification based on graph data augmentation

Abstract: Graph data is widely found in the real world. However, it often faces a

shortage of labeled data in practical applications. Many methods for few-shot learning

on graphs aim to classify data with fewer labeled samples. Although good

performance has been achieved in few-shot node classification tasks, there are still the

following problems. High-quality labeled data are difficult to obtain; generalization

ability is insufficient in the parameter initialization process of few-shot node

classification (Few-Shot Node Classification, FSNC) methods; the topology structure

information in the graph has not been fully mined for the existing FSNC methods. To

address these problems, a new Few-Shot Node Classification model based Graph Data

Augmentation (GDA-FSNC) was proposed. There are four main modules in

GDA-FSNC: a graph data preprocessing module based on structural similarity, a

parameter initialization module, a parameter fine-tuning module, and an adaptive

pseudo-label generation module. In the graph data preprocessing module, an

adjacency matrix enhancement method based on structural similarity was used to

obtain more graph structural information. To enhance the diversity of information

during the model training process, a mutual teaching data augmentation method was

used in the parameter initialization module, by which different patterns and features

were learned from the other model. In the adaptive pseudo-label generation module,

appropriate pseudo-label generation techniques were automatically selected according

to the characteristics of different datasets, then high-quality pseudo-label data was

generated. Experiments were conducted on seven real datasets. The experimental



results show that the proposed model performed better than state-of-the-art few-shot

learning models such as Meta-GNN, GPN, and IA-FSNC in classification accuracy.

On small datasets, it achieved an average improvement of 3.40 percentage points over

the baseline IA-FSNC model, and on large datasets, the average improvement was

2.47 percentage points. GDA-FSNC shows better classification performance and

generalization ability than state-of-the-art methods in few-shot learning scenarios.

Keywords: node classification; Graph Convolutional Network (GCN); data

augmentation; meta-learning; Few-shot Learing (FSL).

0 Introduction

With the rapid development of data science, attribute networks play an important

role in scenarios such as citation networks and social media networks, where node

classification is a fundamental task. Existing studies have shown that graph neural

networks can effectively learn node low-dimensional embeddings and improve

classification performance. However, traditional methods rely on a large amount of

labeled data, while most node categories in real-world scenarios have only a limited

number of labeled instances, which makes these methods prone to overfitting when

dealing with small-sample categories.In addition, the process of manually labeling

data is both time-consuming and expensive. As a result, Few-Shot Learning (FSL) has

gradually received extensive attention from the academic community due to its

excellent performance with limited labeled data. In recent years, meta-learning based

methods have emerged to address the challenges of FSL, especially in the context of

processing Euclidean data. These methods have been widely used in many fields, such



as text and image, to achieve better results. Inspired by meta-learning methods, graph

meta-learning methods for graph-structured data have gradually emerged to solve the

FSL problem in the graph domain. For example, GPN (Graph Prototypical Network)

classifies new instances by learning a set of prototypes for each category and utilizing

the similarity between new instances and these prototypes.Meta-GNN combines

Graph Neural Network (GNN) with the meta-learner MAML ( Model-Agnostic

Meta-Learning) to find initial model parameters that perform well in multiple

meta-tasks.

Although existing graph meta-learning methods have achieved good results in

the field of small-sample learning of graph-structured data, there are several

limitations: 1) High-quality labeled data is difficult to obtain. In practical application

scenarios, even the small amount of labeled data available may have quality problems;

and in specific domains, such as medical image analysis, bioinformatics, etc., the

acquisition of high-quality labels is not only costly but also requires specialized

knowledge; which further leads to the increased difficulty of small-sample learning on

graphs.2) Based on the Graph Convolutional Network (GCN) based traditional

Few-Shot Node Classification (FSNC) method needs to perform a large number of

tasks under the GCN model, and this process affects its learning efficiency and

generalization ability. The main reason is that in GCN, every time a task is performed,

information needs to be aggregated and transferred to the whole graph, which will

consume a lot of computational resources on large-scale graph data; while

small-sample learning itself is easily limited by the insufficient number of samples,



and if multi-tasks are performed on top of this, the model may be over-optimized on

the training samples, which leads to a decrease in the generalization ability.3) Existing

FSNC methods fail to fully mine the topological structure information in the graph,

which leads to the difficulty of the model to accurately capture key features when

analyzing complex graph data, which in turn affects its performance. To address the

above problems, this paper proposes a Few-Shot Node Classification model based

Graph Data Augmentation (GDA-FSNC) model.

1 Related work

In recent years, GNNs have been widely used in machine learning tasks, and

enhancing graph data augmentation has become a research focus. For example, FLAG

(Free Large-scale Adversarial augmentation on Graphs) introduces learnable

gradient-based masks to enhance node features through adversarial perturbation.QI

scholars et al [1] proposed DropEdge and its layer independent variant to alleviate the

problem of over-smoothing of node representations, the former randomly deleted

edges generate perturbed adjacency matrices and share them to all layers, while the

latter generates perturbation matrices independently for each layer.

Although GNN has achieved good results in node classification tasks, its

performance is largely dependent on the number of labeled nodes in each category. In

practice, the problem of insufficient labeled nodes often occurs for emerging

categories. For example, in biological networks, newly discovered protein nodes

require specialized knowledge for annotation. Therefore, it is particularly important

for GNNs to perform effective node classification under the condition of limited



labeled nodes, i.e., the small-sample node classification problem.

Recent research has focused on extracting transferable knowledge from base

classes and applying it to new classes, and these methods place special emphasis on

meta-learning, learning by performing a meta-training task on the base class and

evaluating the model by performing a meta-testing task on the new class. In this paper,

we collectively refer to meta-training and meta-testing tasks as meta-tasks. In the field

of graph data analytics, important progress has been made in a number of

representative models based on the situational meta-learning paradigm. the GPN

model classifies new samples based on the similarity between them and these

prototypes by constructing a collection of prototypes for each category. the

Meta-GNN model combines GNN and MAML with the aim of finding a set of initial

model parameters that can exhibit excellent generalization performance across a

variety of meta-tasks. The GMeta (Graph Meta-learning model [2] employs structural

features of subgraphs to generate representations of nodes, thus effectively addressing

the challenge of classifying nodes with small samples.The IA-FSNC (Information

Augmentation for Few-Shot Node Classification) model incorporates support

augmentation and sample augmentation strategies to improve the performance of the

small-sample node classification task.The TENT model [3] efficiently handles the

problem of inter-task variability by constructing a graph structure based on category

prototypes and corresponding GNN parameters.

2 Problem definition

Formally, let ),,,,( CEVXAG  denote an attribute graph,



where  nvvvV ，21, denotes the set of nodes; E denotes the set of edges; C denotes

the feature matrix, d denotes the node feature dimension, and n denotes the number of

nodes in the graph; A denotes the adjacency matrix, which represents the topology of

the graph, and C denotes the set of categories to which the nodes belong.

In a small sample node classification setup there is nb CCC  , where Cb

denotes the base class and Cn denotes the new class, and a sufficient number of

labeled nodes in the base class Cb are used to train the model, and subsequently, given

an arbitrary subset of the N new classes Cn, the goal is to train classifiers for the new

class Cn with only K ( K is usually taken as 3, 5) labeled nodes per class that can

predict the labels of the remaining unlabeled nodes in the N classes, known as the

N-way K- shot node classification problem.

A meta-learning approach is also used to deal with the small sample node

classification problem, with the base class Cb as the meta-training category set and the

new class Cn as the meta-testing category set. A meta-training task t is constructed by

sampling N classes from the base class Cb. t consists of a support set St and a query set

Qt, St consists of K randomly selected nodes from each class in the category N,

denoted as A, and Qt consists of b randomly selected residual nodes from each class in

the category N, denoted as B. The support set St is the labelled nodes in the task t, and

b denotes the number of nodes evaluated in the query set Qt contained in the query set

Qt, and b is set as 12. The goal of each meta-training task is to minimise the

classification loss between the predicted probability and the true label of the query set

Qt.



Also given a series of meta-training tasks, the aim is to learn a classifier model

that is able to utilise transferable prior knowledge in meta-testing tasks. Similar to the

meta-training N-way K-shot task, the meta-testing task t¢ is sampled in a new class

Cn , tconsists of the support set tS  and the query set tQ  , and the labels of the query

set tQ  can be predicted by the classifier model.

3 GDA-FSNC model

In this paper, we propose a small sample node classification model GDA-FSNC

based on graph data enhancement technique, which consists of four main modules:

graph data preprocessing based on structural similarity, parameter initialisation,

parameter fine-tuning and adaptive pseudo-label generation module. The design idea

of the model is as follows:

1) By analysing the number of common neighbours of node pairs as well as the

degree of individual nodes, the adjacency matrix of the original dataset was enhanced

to contain more information about the structure of the nodes, which helps to better

represent the inter-relationships between nodes.

2) In accordance with the small-sample learning paradigm, the augmented entire

dataset is divided into base and new classes, and the base and new class datasets are

further subdivided into support and query sets in order to provide the corresponding

training and testing data at different stages.

3) On the base class data, the parameters are initialised using a two-layer graph

convolutional neural network (GCN), which is structured to fully learn the structural

information of the graph dataset. In addition, the learning ability of the model is



enhanced using a graph data augmentation method based on the idea of mutual

teaching to accelerate the convergence of the model loss.

4) When the GCN converges after training in the base class, the linear layer

weight parameters in the first convolutional layer of the GCN model with better

classification performance are selected and passed to the new class classification task

as initialisation parameters. These parameters contain the a priori knowledge and

structural information of the base class, which is an important guide for the learning

of the new class.

5) Fine-tuning the initialisation parameters of the GCN using the support set in

the new class and the high-quality pseudo-labelled data generated by the adaptive

pseudo-labelling generation module, a process aimed at better adapting the model to

the data distribution and structural characteristics of the new class, allowing it to get

better performance in the new class task.

3.1 Data preprocessing module based on structural similarity

The similarity of graph nodes is an important basis for knowledge discovery and

pattern recognition on graphs and networks, and the adjacency matrix is the most

direct method used to measure the degree of structural similarity between nodes in a

graph. In order to present the structural information of a graph more efficiently, the

neighbourhood matrix can be enriched by calculating the structural similarity between

nodes using different metrics such as Salton[4], Dice and Jaccard. In order to

investigate the performance impact of different metrics on the downstream

small-sample node classification task, different node similarity metrics are used to



augment the neighbour-joining matrix, and then a 2-way 1-shot node classification

experiment is carried out on two citation datasets[5], Cora and Citeseer, using the

GDA-FSNC model with the structural augmentation removed. The classification

results are shown in Table 1. (where Origin denotes that no similarity metrics are used

for enhancement and only the original neighbourhood matrix is used, and

Salton&Dice denotes that the neighbourhood matrix is enhanced using the linear

fusion of Salton and Dice metrics).

Table 1 Classification accuracy under different similarity measures

measures Cora Citeseer

Origin 72.08 72.08

Jaccard 73.61 73.61

Dice 74.44 74.44

Salton 75.13 75.13

Salton&Dice 75.50 75.50

From the above table, it can be observed that there are differences in the

effectiveness of different metrics for neighbourhood matrix enhancement.Salton, Dice,

Jaccard and Salton&Dice similarity metrics all improve the classification accuracy of

the model to a certain extent, with the linear fusion approach of Salton&Dice being

the most effective in terms of improvement in classification accuracy. This is because

the Salton metric takes into account the number of common neighbours and is

normalised by the square root of the node degree, so augmenting the adjacency matrix

with the Salton metric reveals more effective information about the details of the



structural similarity between the nodes in the graph; whereas with the Dice and

Jaccard metrics, both of them emphasise on the overall size and differences in the set

of nodes' neighbours, so that when using either the Dice or the Jaccard metrics, on the

other hand, better reflect the global information of structural similarity between

nodes[6-7].

Based on the above experimental findings, this paper adopts the linear fusion

method of Salton and Dice metrics in order to capture both local and global

information about the similarity of nodes in the graph when calculating the node

similarity matrix, which in turn effectively enhances the adjacency matrix A, and the

augmented matrix is denoted as nnRA 
~ . Let *aij denote the similarity between the

node pairs )( 21 vv， , and then *aij is defined as:
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Where, jiji degdegnene  /1  is the Salton metric and

)/(22 jiji nenenene   is the Dice metric. nei is the set of neighbours of node vi

and ji nene  is the number of common neighbour nodes between node vi and node vj.

degi denotes the degree of node vi. In linear fusion methods, determining the weights

1 a and 2 a for the Salton metric and the Dice metric usually depends on experiments

and data analysis. Therefore, in this paper, we use a grid search algorithm to

determine the weights of Salton metric and Dice metric using classification accuracy,

which is used to evaluate the effectiveness of the linear fusion method with different

combinations of weights[8-9]. The combination of weights that results in the optimal

performance evaluation metrics is selected as the final weights of Salton and Dice



metrics. (Initially, the weights of the Salton and Dice metrics are set to be equal, 0.5

each, and the weight parameter ranges from 0 to 1, discretised, so that the sum of their

weights is 1. A grid search algorithm is performed to find the optimal combination of

weights in the interval from 0 to 1.)

According to the Salton and Dice metric formula, it is known that the greater the

number of common neighbours between two nodes, the closer they are to each other,

and the greater the value of *
ija [10], which can be used to quantify the structural

similarity between two nodes in a graph. For large graphs, *
ija can also be computed

efficiently because it only requires the set of neighbour nodes of the two nodes rather

than the global information of the whole graph.

3.2 Initialisation of GDA-FSNC model parameters

Parameter initialisation plays an important role in meta-learning methods, and

for traditional meta-learning methods, the process of parameter initialisation is

accomplished by constructing multiple related node classification tasks. The specific

steps are as follows:

1) Construct multiple node classification tasks, each of which randomly selects a

combination of subsets of different classes from the same dataset to obtain training

samples.

2) Each task will initialise the model parameters independently, usually using the

same network structure. This is because each task has its own unique combination of

training samples and categories, so the model parameters need to be initialised

independently to suit the needs of each task[11].



3) In the meta-training phase, model parameters are adjusted for model training

for each task. Specifically, the model is iteratively trained according to the node

categories of each task and the model parameters are gradually adjusted to optimise

the performance metrics (e.g. classification accuracy) of the downstream tasks[12].

4) By training across related tasks, a representation of model parameters that is

valid for different tasks is learnt. This generalised parameter can be used as an

initialisation parameter for new tasks to help them better adapt to the dataset, thus

improving the performance of the model on a variety of different tasks.

Traditional meta-learning generalises model parameters through multiple task

training. Inspired by the above ideas, IA-FSNC can substantially reduce the overhead

caused by repeated training by passing the linear layer weight parameters and the

generative layer weight parameters in the first convolutional layer of the GCN in the

meta-training phase to the parameter fine-tuning phase as the initialisation parameters

of the first layer of the GCN in the parameter fine-tuning.

However, the parameter initialisation strategy of the IA-FSNC model still has

some shortcomings.The linear layer weight parameters of IA-FSNC are derived from

the layers in the GCN that perform linear transformations.Although these parameters

are trained and optimised, due to the intrinsic nature of the linear transformations,

they have limited learning ability and are difficult to adequately capture the complex

graph structure and node feature relationships. In addition, the generative layer weight

parameters of the IA-FSNC model come from additional linear layers, which are

weakly correlated with the GCN model itself, resulting in poor quality of the acquired



parameters.The parameter initialisation method of the IA-FSNC model uses

parameters from a single GCN model, which restricts the model's ability to generalise

and learn. In addition, IA-FSNC directly transmits the parameters of the meta-training

phase without evaluating the strengths and weaknesses of the effects of these

parameters, and may also suffer from poor quality of the propagated parameters.

To solve the above problems, this paper proposes a new parameter initialisation

strategy to optimise the parameter initialisation process of the model. In the

meta-training phase, a graph data enhancement method based on mutual teaching is

proposed to address the problems of insufficient learning capability of a single GCN

and insufficient data information in small sample scenarios. Specifically, two GCN

models are allowed to train on the same dataset and use each other's generated labels

or predictions as training targets, thus enhancing the diversity of information during

model training. The relationship between the mutual teaching enhancement method

and model loss design will be discussed in detail in the subsequent sections of this

paper.

In order to pass the parameters of meta-training more efficiently to obtain a

priori knowledge, the weight parameters of the first convolutional layer of the GCN

model, which has the highest classification accuracy, are selected to be passed to the

meta-testing stage GCN. The linear layer is usually located at the beginning of the

graphical convolutional network, which is responsible for the aggregation of the node

features, and its weight parameters determine how to combine the node features

without considering the complex spatial structure information is not taken into



account. The weight parameter of the convolutional layer determines how to perform

the convolution operation on the input feature map, which is able to capture more

complex spatial structure information, so the weight parameter of the convolutional

layer has better generalisation performance.

In order to effectively evaluate the effect of passing parameters and ensure the

quality of the parameters, this paper introduces the classification accuracy threshold

constraint, which selects the parameters of the GCN model to be passed only when

the classification accuracy of the model is in the set threshold interval. The specific

settings of the classification accuracy threshold constraint will be described in detail

in Chapter 4, Experiments.

By adopting the above strategy, the aim is to optimise the parameter initialisation

process in order to be able to obtain better GCN parameters, thus providing better

initialisation conditions for the meta-testing phase.

3.3 Fine-tuning of GDA-FSNC model parameters

Meta-testing phase evaluates the performance of the model on an unseen test set

In this phase, parameter fine-tuning is usually used to optimise the model. Given the

initialisation parameters in the parameter initialisation process, a two-layer GCN is

used to output the embedded representations of all the nodes in the new class and train

a classifier between the nodes and their labels in the support set, which is prone to

overfitting due to the limited number of samples. In this paper, we propose an

improved adaptive pseudo-labelling generation strategy for parameter fine-tuning to

reduce the model's dependence on high-quality labelled data and thus solve the



overfitting problem. The two pseudo-label generation techniques included in this

strategy are first analysed in the following, i.e., the high-confidence pseudo-label

generation algorithm and the label propagation algorithm. These pseudo-label

generation techniques are part of the data augmentation approach, which aims to

efficiently expand the training dataset and improve the generalisation ability and

robustness of the model.

3.3.1 High-confidence pseudo-label generation algorithm

In high confidence pseudo-labelling generation algorithm, this paper uses a

classifier to classify the nodes in the set of unselected nodes. Some of them are then

labelled to increase the number of nodes selected based on high confidence.

Specifically, it is assumed that the dataset has c classes , using the following way to

denote the set of labelled nodes:  ],1[,),( cjViyxD LijiL  ， , and the set of

unlabelled nodes is denoted as  UiiU VxD  , , where VL is the set of labelled

vertices, VU is the set of unlabelled vertices, and UL VVV  . The pseudo-labelled

vector Ui Diy ,~， of node vi is obtained from the vector pi of the ith row of the

predicted probability matrix P obtained from the learning of GCN by one one-hot

operation as given by the equation as follows:



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

1~
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Let the prediction confidence ri of node vi be the maximum value of the i-th row

vector pi of P.

])),([( 21 iciii pp,pmaxmaxr ， （3）

Then, the index set is returned for the column vector T
nrrrr ][ 21 ，，，  , sorted



in descending order, then:

)(rargsortq  （4）

where q is the index vector returning the ordered confidence level. A number of

nodes with high confidence pseudo-labels for each class can be obtained using q. For

each GCN, the set of these nodes is Vpl , and the support set is expanded using Vpl .

The number of nodes with high confidence pseudo-labels for each class is determined

by the hyperparameter topk.

3.3.2 Label Propagation Algorithm

The label propagation algorithm iteratively propagates existing labels through

the neighbourhood of the graph to generate pseudo-labels and expand the support set.

In order to capture both local and global information of node similarity in the graph

data during the label propagation process and to better represent the graph structure,

this paper adopts the augmented adjacency matrix A~ obtained in the previous

subsection 3.1 to represent the adjacency of the graph. In the iterative process, the

enhanced adjacency matrix A~ is multiplied with the current pseudo-labelling matrix to

update the labels of each node, in which graph structure-based label propagation is

performed; for nodes with existing labels, onehot coding is used to recover their

correct labels.

During the iteration of the label propagation algorithm, the pseudo-label of each

node is updated by the propagation of the labels of its neighbouring nodes. To

improve the accuracy of the pseudo-labels, the effects of the original labels (e.g.,

labels in the training data) and label propagation are balanced by the parameter σ in



each iteration.

After analysing the two pseudo-label generation techniques in Sections 3.3.1 and

3.3.2, this paper proposes a metric for pre-computing the graph-level feature

similarity for each dataset. This metric is used to measure the consistency of node

features across the whole graph; the higher the graph-level feature similarity, the more

consistent the node features are across the whole graph. Based on this, appropriate

pseudo-label generation strategies are automatically selected to expand the sample set

based on the graph-level feature similarity. The node similarity is calculated by

combining the node feature matrix and the adjacency matrix, and the average node

feature similarity (avg_sim) of the whole graph is calculated using the weighted

normalisation method based on the edge information in the adjacency matrix, which is

used as a measure of the graph-level feature similarity.

4 Experiments and analysis of results

4.1 Experimental set-up

The experimental environment of this paper is based on 12-core Intel Xeon

Platinum 8255C CPU, RTX 2080 Ti GPU with 11GB of video memory (Gigabyte),

the programming language is Python3.9, and the experimental model is

PyTorch1.10.0.To ensure the fairness and accuracy of the experiments, the results of

the experiments in this paper are taken as the average value of the model's 10 runs.

runs of the results. The query set size b in the meta-test task is uniformly set to 12.

The following describes the dataset, baseline model and experimental parameter

settings respectively.



4.1.1 Data set and baseline methodology

In this paper, seven real-world datasets are selected, including four small-scale

datasets: Cora, Citeseer, Computers, and Coauthor-CS, and three larger-scale datasets:

Cora-full, Amazon Electronics, and Amazon Clothing.This paper summarises key

statistical information of the selected datasets, including the number of nodes, the

number of edges, the number of features, the number of categories, and the similarity

of graph-level features proposed in this paper, as shown in Table 2. statistics of the

selected datasets, including the number of nodes, the number of edges, the number of

features, the number of categories and the graph-level feature similarity proposed in

this paper, and the related data are shown in Table 2.

To validate the effectiveness of GDA-FSNC, it is analysed in this paper in

comparison with six mainstream methods, including: GCN, Meta-GNN, G-Meta,

GPN, IA-FSNC and TENT.

Table 2 Statistics of datasets

data set Number

of nodes

number

of sides

characteristic

number

(math.)

Number

of

categories

Graph level

feature

similarity

Cora 2708 10556 1433 7 0.650

Citeseer 3327 9104 3703 6 0.596

Computers 13381 491722 767 10 0.727

Coauthor-CS 18333 163788 6805 15 0.728

AmazonElectronics 42318 43556 8669 167 0.814



Cora-full 19793 65311 8710 70 0.607

Amazon Clothing 24919 91680 9034 77 0.762

4.1.2 Experimental parameter settings

The GDA-FSNC model in this paper is implemented by a two-layer GCN model.

The model optimisation is done using Adam with a learning rate of 0.01 and the

weight decay rate is set to 10-4. Since the GDA-FSNC model automatically selects

the appropriate pseudo-label generation technique to generate pseudo-labels based on

the graph-level feature similarity avg_sim of the dataset, the graph-level feature

similarity threshold δ is set to 0.6 by default in this experiment, and when avg_sim is

greater than δ, the GDA-FSNC model will use the label propagation strategy to

generate pseudo-labels to expand the support set. otherwise, the high-confidence

pseudo-label generation algorithm is used. FSNC model will use the label propagation

strategy to generate pseudo-labels to expand the support set, otherwise the

high-confidence pseudo-label generation algorithm is used. (The default setting of δ is

0.6, which is based on experimental experience, and the subsequent content will give

the corresponding experimental analysis for this value.) In the high-confidence

pseudo-label generation algorithm, the topk parameter is set to 30 by default. in

addition, in order to effectively evaluate the effect of passing parameters in the

parameter fine-tuning stage and ensure the quality of parameters, this paper introduces

a threshold constraint on the classification accuracy. Experimental experience shows

that when the classification accuracy of the model is within [0.45,0.95], the model in



the meta-training phase is able to learn richer a priori knowledge, and passing such

parameters can improve the classification performance in the meta-testing phase.

Therefore, in this experiment, the classification accuracy threshold constraint is set to

be within [0.45,0.95].

4.2 Node classification experiments and analysis

In this paper, three small datasets Cora, Citeseer, and Computers are used for

experimental analyses of 2-way K-shot node classification.Three large datasets,

Cora-full, Amazon Electronics, and Amazon Clothing, are used for experimental

analyses of 5-way K-shot node classification. analysis. In order to comprehensively

evaluate the performance of the model under different experimental settings, the

Coauthor-CS dataset is used to conduct 2-way K-shot and 5-way K-shot node

classification experiments. The experimental results are shown in Tables 3 and 4.

Combining all datasets and settings, the GDA-FSNC model improved

classification accuracy by an average of 3.40 percentage points on the small dataset

compared to the baseline model IA-FSNC, and the average improvement on the large

dataset was 2.47 percentage points. In the 2-way 1-shot setting of the Coauthor CS

dataset, the classification accuracy of the GDA-FSNC model improves by only 0.67

percentage points relative to the baseline model IA-FSNC, while in the 5-way 1-shot

setting of this dataset, the classification accuracy improves by 7.73 percentage points

over the IA-FSNC model. The experimental results show that the GDA-FSNC model

exhibits better performance in the small-sample learning node classification task with

good generalisation ability, especially for datasets with more categories.



For the baseline models: the GCN, G-Meta, Meta-GNN and GPN; these models

do not perform as well as GDA-FSNC in most datasets and settings; the reason may

be that these models have insufficient learning and generalisation capabilities when

dealing with limited samples, making it impossible to accurately capture complex

distributions and structures in graph data. Experimental results show that IA-FSNC

and TENT perform better in the small-sample learning node classification task.

However, the parameter initialisation method of the IA-FSNC model adopts the

parameters of a single GCN model, which limits its generalisation and learning ability

to a certain extent; the IA-FSNC model directly passes the parameters of the

meta-training stage, but does not evaluate the adaptability and advantages and

disadvantages of these parameters, which is also a constraint on the performance

improvement of the model.The TENT model mainly takes into account the differences

between tasks but does not The TENT model mainly considers the differences

between tasks, but does not fully consider the differences between different datasets,

which affects its performance on multiple datasets.

Table 3 Classification accuracy (mean and standard deviation) of different models

on small datasets

mould

Cora Citeseer

2-way

1-shot

2-way

3-shot

2-way

5-shot

2-way

1-shot

2-way

3-shot

2-way

5-shot

GCN
62.92±3.

72

75.08±3.2

1

82.21±2.6

3

53.25±4.7

1

65.0±1.0

2

72.33±4.

15



Meta-GN

N

67.73±0.

12

76.16±0.1

6

83.05±0.1

7

55.10±0.1

2

68.46±0.

09

75.69±0.

10

G-Meta
65.43±0.

16

76.31±0.1

3

81.75±0.1

0

54.48±0.1

0

66.46±0.

11

73.44±0.

12

GPN
64.32±0.

12

77.43±0.2

0

82.45±0.1

5

59.46±0.1

6

67.31±0.

15

75.73±0.

09

IA-FSNC
74.78±0.

17

80.68±0.1

3

85.95±0.1

0

69.83±0.1

4

78.23±0.

12

81.33±0.

35

TENT
55.51±0.

11

62.79±0.1

3

62.14±0.1

2

53.01±0.1

1

54.21±0.

11

56.17±0.

11

GDA-FS

NC

75.05±0.

15

83.71±0.4

3

87.95±0.0

6

75.53±0.1

5

80.35±0.

12

82.20±0.

11

mould

Computers Coauthor-CS

2-way

1-shot

2-way

3-shot

2-way

5-shot

2-way

1-shot

2-way

3-sho

2-way

5-shot

GCN
71.13±16

.2

84.79±12.

64

88.75±10.

67

82.33±18.

73

92.58±7.

83

93.10±6.

93

Meta-GN

N

73.92±0.

21

87.66±0.6

4

89.99±0.1

4

86.85±0.1

2

91.93±0.

11

93.69±0.

15

G-Meta
72.50±0.

15

85.95±0.1

9

89.63±0.2

3

85.59±0.1

0

90.56±0.

43

92.89±0.

32

GPN 72.87±0. 86.55±0.1 90.62±0.0 91.99±0.1 94.25±0. 93.37±0.
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IA-FSNC
80.24±0.

12

87.71±0.5

2

91.04±0.0

7

91.43±0.1

2

95.70±0.

05

96.65±0.

05

TENT
86.12±0.

16

92.47±0.1

0

94.58±0.0

9

90.81±0.0

6

93.04±0.

03

95.36±0.

04

GDA-FS

NC

90.16±0.

14

96.58±0.0

6

97.64±0.0

4

92.10±0.1

4

96.47±0.

07

96.70±0.

06

Table 4 Classification accuracy (mean and standard deviation) of different models on

big datasets

mould

Cora-full Coauthor-CS

5-way

1-shot

5-way

3-shot

5-way

5-shot

5-way

1-shot

5-way

3-shot

5-way

5-shot

GCN
31.85±2.2

0

38.33±1.3

8

42.89±3.2

3

45.05±0.3

1

53.48±2.1

5

59.37±1.6

8

Meta-GN

N

50.57±1.8

7

56.19±0.5

7

61.66±3.8

5

53.18±0.4

9

61.18±1.7

3

63.47±2.4

6

G-Meta
42.71±1.6

3

52.64±1.2

4

55.68±3.2

8

50.97±0.6

7

62.83±0.9

1

64.65±1.0

2



GPN
49.75±2.1

0

61.78±0.6

6

65.77±2.8

3

58.61±0.5

4

69.70±0.8

1

72.66±0.4

9

IA-FSNC
62.32±0.7

1

70.42±0.3

9

75.29±0.5

7

80.43±01

2

91.65±0.0

5

94.13±1.5

3

TENT
52.64±0.0

8

64.33±0.4

8

67.74±1.2

7

54.59±0.1

7

70.16±0.3

8

73.12±0.0

8

GDA-FSN

C

65.44±0.1

0

70.56±0.2

0

77.28±2.1

8

88.16±0.3

8

93.06±0.4

5

95.28±1.0

4

mould

Amazon Electronics Amazon Clothing

5-way

1-shot

5-way

3-shot

5-way

5-shot

5-way

1-shot

5-way

3-shot

5-way

5-shot

GCN
41.47±0.9

7

51.87±1.8

4

61.92±2.8

1

48.60±3.1

5

59.82±2.5

2

66.88±0.3

9

Meta-GN

N

54.23±1.2

9

62.19±1.4

8

68.08±3.1

6

67.42±1.6

6

74.62±2.3

5

75.38±1.7

8

G-Meta
44.14±1.2

4

55.75±0.5

2

60.06±2.9

8

57.71±0.6

7

64.44±1.6

8

71.28±1.3

4

GPN
46.79±1.4

0

61.41±0.7

9

66.48±2.3

5

59.39±1.8

7

72.32±2.2

7

74.40±1.2

5

IA-FSNC
68.80±0.8

6

79.78±0.4

5

83.77±0.2

3

75.53±0.3

2

83.39±0.8

5

85.26±0.4

8

TENT 66.51±0.1 77.33±0.5 80.42±0.0 69.17±0.1 80.07±0.4 82.29±0.6
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GDA-FSN

C

70.86±0.7

3

81.76±1.1

6

84.61±2.0

9

78.31±0.9

7

86.86±0.4

5

88.24±1.9

8

4.3 Ablation experiments and analysis of the GDA-FSNC model

Six datasets, Cora, Citeseer, Computers, Corafull, Amazon Electronics and

Amazon Clothing, were selected for the ablation experiments in this paper, with the

aim of evaluating the impact of the individual modules in the GDA-FSNC model on

the model performance. The model variant that expands the support set using only the

label propagation algorithm to generate pseudo-labels is named GDA-FSNC\C;

whereas the variant that expands the sample set using only the high-confidence

pseudo-label generation technique is called GDA-FSNC\L; the model variant that

removes the structural similarity-based preprocessing module for graph data is called

GDA-FSNC\S; and the removal of the mutual pedagogical data augmentation method

that The model variant that removes the mutual teaching data enhancement method

and is trained using only a single GCN model is referred to as GDA-FSNC\MT. the

meta-test task experiments were all set up as a 2-way 3-shot. the results of the overall

ablation study are shown in Table 5. the results of the overall ablation study are shown

in Table 5. the results of the ablation study are shown in Table 5.

The experimental results show that the GDA-FSNC model, by integrating

multiple data enhancement techniques (e.g., label propagation, high-confidence

pseudo-label generation, and inter-teaching training methods), outperforms the other



variants with a single strategy or module culling on all datasets. Specifically, the

GDA-FSNC\C model variant is able to propagate pseudo-labelling information more

accurately in datasets with high feature similarity (e.g., Cora, Electronics, and

Clothing), effectively improving classification accuracy. The GDA FSNC\L model

variant, on the other hand, performs well on graph data with lower feature similarity

(e.g., Citeseer), showing that a high-confidence pseudo-labelling generation strategy

is an effective data augmentation tool in graph data with more dispersed node feature

distribution. In addition, preprocessing of graph data based on structural similarity

also plays a role in enhancing the adjacency matrix and improving model performance.

It is worth mentioning that after removing the mutual teaching data enhancement

method, the model performance decreases on all datasets, which verifies the

importance of this method in improving the model classification performance. In

summary, by integrating these data enhancement strategies, the GDA-FSNC model

not only demonstrates good generalisation ability, but also achieves better

classification performance on multiple types of datasets.

Table 5 The classification results of GDA-FSNC and Its variant models

mould Cora Citeseer Computers
Amazon

Electronics

Amazon

Clothing
Cora-full

GDA-FSNC\L 82.73 78.74 84.72 50.00 54.17 80.00

GDA-FSNC\C 83.65 75.40 94.44 93.61 94.37 85.12

GDA-FSNCMT 82.23 72.08 84.03 82.64 87.11 77.22

GDA-FSNC\S 82.89 78.47 94.75 93.33 92.96 85.87



GDA-FSNC 84.05 79.71 95.14 95.83 95.14 87.43

4.4 Parameter sensitivity experiments and analysis of the GDA-FSNC model

This subsection focuses on analysing the impact of graph-level feature similarity

(avg_sim) threshold δ, support set size |S| in the meta-testing phase, query set size |Q|

in the meta-training phase and meta-task parameters (N-way, K-shot) in the

meta-training phase on the performance of the GDA-FSNC model and its variants.

Evaluate the impact of the threshold δ setting in the adaptive pseudo-label generation

module of the GDA-FSNC model on the model performance on six datasets, Cora,

Citeseer, Computers, Corafull, Amazon Electronics, and Amazon Clothing. Analytical

experiments on support set size |S| and query set size |Q| were conducted on Cora and

Citeseer, two moderately sized datasets with a small variety of data, to investigate the

impact of these parameters on model performance. Sensitivity experiments on

meta-task parameters (N-way, K-shot) in the meta-training phase were conducted on

three larger datasets, Cora-full, Amazon Electronic and Amazon Clothing. These

larger datasets have more categories and provide richer information for parameter

(N-way, K-shot) sensitivity studies.

4.4.1 Graph-level feature similarity (avg_sim) threshold δ

In the adaptive pseudo-label generation process, the threshold δ of graph-level

feature similarity (avg_sim) plays a crucial role in selecting an appropriate

pseudo-label generation strategy. Therefore, this section aims to analyse how different

settings of the graph-level feature similarity threshold δ affect the model performance.



Given that the graph-level feature similarities of the selected datasets are all over 0.5,

the model will uniformly adopt the label propagation algorithm if δ is set below 0.5,

which is not conducive to evaluating the impact of different threshold settings on the

performance. In order to deeply explore the specific impact of threshold settings on

model performance, the initial experimental threshold in this study was set at 0.5, and

the threshold range was set between 0.5 and 1, with discrete values taken every 0.1,

i.e., values of 0.5, 0.6, 0.7, 0.8, 0.9, and the meta-test tasks were set as 2-way

1-shot.The experimental results are shown in Table 6.

The experimental results show that on most datasets, the model performance is

optimal or near-optimal when δ is set around 0.6. For example, on the Citeseer dataset,

when δ is set to 0.6, the classification accuracy of the model increases from 59.38% to

75.34%, showing a large improvement[13]. For most of the datasets, the model

performance starts to degrade when the threshold is set above 0.6, especially on the

Amazon Electronics and Amazon Clothing datasets, the performance degradation is

very significant when δ is set to 0.9, dropping to 51.23% and 55.21%, respectively,

which can be attributed to the fact that when δ is set to 0.9, it means that only the

when the average feature similarity between nodes in the graph is very high (greater

than or equal to 0.9), the label propagation algorithm is enabled. If all the actual

avg_sim values are below 0.9, even if they are very close to 0.9, the model will use

the high confidence pseudo-label generation algorithm by default. The

high-confidence pseudo-labelling generation algorithm may be more effective in

datasets where the spatial distribution of features varies significantly, as it relies on



the model's confidence in the predictions of individual nodes. In such datasets, even if

the nodes are connected by edges, the features or labels of each node may have more

independent predictive attributes due to the obvious feature differences. In contrast, in

datasets with highly similar features, the use of this algorithm leads to the omission of

important global structural information, making it possible for the model to fail to

effectively capture structural and feature similarities in the graph, which can affect

performance.

Table 6 The classification results of GDA-FSNC and Its variant models

mould Cora Citeseer Computers
Amazon

Electronics

Amazon

Clothing
Cora-full

GDA-FSNC\L 82.73 78.74 84.72 50.00 54.17 80.00

GDA-FSNC\C 83.65 75.40 94.44 93.61 94.37 85.12

GDA-FSNCMT 82.23 72.08 84.03 82.64 87.11 77.22

GDA-FSNC\S 82.89 78.47 94.75 93.33 92.96 85.87

GDA-FSNC 84.05 79.71 95.14 95.83 95.14 87.43

4.4.2 Supporting Set Size|S|

This section investigates the effect of support set size|S| on the performance of

GDA-FSNC and its variants during the meta-testing phase. The corresponding

experimental results are shown in Fig. 1, where the horizontal coordinate indicates the

size of the support set |S| and the vertical coordinate indicates the classification

accuracy of the model.



The experimental results show that the classification accuracy of the model

shows an upward trend as the support set size increases, which is due to the fact that a

larger support set facilitates the model's learning of the potential distribution of the

data, and at the same time enhances the model's ability to generalise to the new

categories. However, as the support set size increases, the accuracy improvement

shows a slowing down trend, which indicates that when the support set is too large,

the information gain of the newly added samples for the model starts to decrease,

which may be due to the higher consistency between the new samples and the existing

samples in the feature space. In summary, an appropriate increase in the support set

can improve the performance of the meta-learning model, but too large a support set

may cause a slowdown in the model performance improvement.

(a) Cora



(b) Citeseer

Fig. 1 The classification results of GDA-FSNC and its variants at different |S| values

4.4.3 Query Set Size |Q|

In this section, the effect of query set size|Q| on the performance of the model

GDAFSNC and its variants during the meta-training phase is investigated, and the

Cora and Citeseer datasets are selected for the related experiments. The experimental

results are displayed in Fig. 2, where the horizontal coordinate indicates the query set

size |Q| and the vertical coordinate indicates the classification accuracy of the model.

On the Cora dataset, GDA-FSNC and its variants have different sensitivities to

the query set size |Q|. In particular, GDA-FSNC\L shows more significant

performance improvement when |Q| is small and then fluctuates. The reason is its

high-confidence pseudo-label generation strategy, which is unable to accurately

capture the differential features between categories on datasets with high feature

distribution consistency. As |Q| changes, the query set may introduce more noise and

uncertainty. In contrast, GDA-FSNC\C exhibits good stability under different sizes of

query sets. This is due to its adoption of a label propagation strategy that effectively



captures the category features in datasets with high consistency. In addition, the GDA

FSNC model is stable under different |Q| values and has good generalisation ability.

On the Citeseer dataset, the relationship between the three models and the query

set size is complex; initially, increasing the query set improves the performance, but

too large a query set may lead to noise and overfitting. Therefore, optimising the

query set size |Q| to balance the learning efficiency and prediction ability of the

models is crucial to improve the model performance in the meta-learning phase.

(a) Cora

(b) Citeseer

Fig. 5 The classification results of GDA-FSNC and its variants at different |Q| values



5 Conclusion

In this paper, a new small-sample node classification model (GDA-FSNC) based

on graph data augmentation technique is proposed by studying and analysing the

problems of current small-sample learning methods. The experimental results of the

conducted node classification experiments, ablation experiments and parameter

sensitivity analyses show that the GDA-FSNC model significantly improves the

classification accuracy of the model in small-sample learning scenarios, and has a

good generalisation ability on a wide range of datasets. The model effectively extracts

node topology information by augmenting the adjacency matrix using structural

similarity; the mutual teaching data augmentation method adopted not only improves

the efficiency of parameter initialisation, but also enhances the model's ability to

generalise across tasks; and the application of the adaptive pseudo-labelling generator

module reduces the model's dependence on high-quality labelled data and further

optimises the model's adaptation to a variety of datasets. Future research can focus on

the quantitative analysis of different data enhancement strategies in small sample

scenarios and optimisation strategies for multiple graph data.
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