Ground Current Prediction Methodology Employing RIME-
CNN-LSTM-Attention Architecture

Abstract

The secure and dependable functioning of high-voltage cable networks relies on the
accurate prediction of ground currents. This research introduces a groundbreaking
prediction framework, termed RIME-CNN-LSTM-Attention, which leverages the Rime
optimization algorithm to enhance the architecture of Long Short-Term Memory networks
(LSTM). The framework integrates Convolutional Neural Networks (CNN) and attention
mechanisms to establish a robust predictive backbone. The adaptability of the RIME
algorithm is instrumental in optimizing critical hyperparameters such as learning rate,
hidden layer dimensions, and regularization coefficients, thereby enhancing the model's
global optimization capabilities and reducing the likelihood of converging to suboptimal
local optima. The main goal of this research is to create a prediction model for ground
currents with a high degree of accuracy, which is crucial for ensuring the secure
monitoring and upkeep of high-voltage cable networks. Empirical results validate the
exceptional performance of the RIME-CNN-LSTM-Attention model, demonstrating
significant reductions in Root Mean Square Error (RMSE) by 57.12%, 51.90%, and
39.95% compared to CNN, LSTM, and CNN-LSTM-Attention models, respectively. This
novel approach not only provides robust technical support for the management and
maintenance of high-voltage cable systems but also paves new pathways for time-series
forecasting research. The study underscores the model's superior predictive
performance and robustness, highlighting its substantial academic and engineering
significance.

Keywords: Ground current prediction; Long short-term memory networks; Rime
optimization algorithm; Time-series forecasting; Hyperparameter optimization.

1. Introduction

As China's urbanization accelerates, the dependable operation of urban power systems—critical infrastructure
for city development—has become increasingly vital. This is especially pronounced in teeming metropolises
with high population densities and robust economic activity, where the demand for electricity is rising, and the
performance standards for power transmission media, particularly high-voltage cables, are becoming ever more
exacting [1-3]. High-voltage cables, as the main channels for power transmission, are subjected to extended
periods of high-load operation that severely test the resilience of cable insulation materials [4], significantly
heightening the risk of cable failures. Among the various indicators of faults, variations in the grounding current
of high-voltage cables have emerged as a crucial diagnostic indicator of the condition of cable insulation. The
occurrence of grounding current often signals insulation issues within the cable, damage to the metallic sheath,
or flaws in the grounding system. Consequently, the ability to accurately predict changes in the grounding
current of high-voltage cables is essential for the timely detection of cable faults and the prevention of power
system outages [5].

However, the predictive accuracy and broad applicability of conventional physical models and empirical
formulas in forecasting high-voltage cable grounding currents are significantly constrained due to the challenge
of accounting for the intricate grid environment and the variable operational conditions. In recent years, the
rapid advancement of deep learning technology has introduced novel approaches to high-voltage cable
grounding current prediction. Deep learning models can autonomously extract complex features from data and
generate precise predictions based on these features, offering robust support for the stable operation of power



systems [6]. Hence, this paper proposes a RIME-CNN-LSTM-Attention-based time series prediction model
tailored for forecasting grounding currents in high-voltage cables. The model is designed to address the
limitations of traditional methods, enhance prediction accuracy and robustness, and provide reliable technical
support for the preventive maintenance and fault warning of power systems. By employing this model, we aim
to achieve accurate prediction of high-voltage cable grounding currents, thereby ensuring the secure and
uninterrupted operation of the power system.

Within the power system domain, there have been research efforts to apply deep learning techniques to the
prediction of high-voltage cable grounding current [7]. Studies [8-15] primarily focus on short circuit current
prediction methods, including the use of distribution models, wavelet transform, least squares, neural networks,
and others, with the goal of improving prediction accuracy and efficiency. Nevertheless, these methods face
limitations when applied to the prediction of grounding current in high-voltage cables, such as issues with model
complexity and data processing capability. In the realm of deep neural networks, scholarly works [16-21] have
proposed groundbreaking methods for forecasting the grounding current in high-voltage cables. These academic
endeavors utilize various deep learning architectures, including convolutional neural networks (CNN), long
short-term memory networks (LSTM), and extreme learning machines (ELM), to construct accurate and
effective predictive frameworks that merge temporal data series with extrinsic impact variables. Among them,
literature [16] achieved accurate power load prediction by transforming time series data into images for
processing and clustering using a CNN model. Literature [17] proposed a scalable prediction model through the
combination of CNN and K-means clustering algorithm. Literature [18] introduced the deep learning model,
which delivered highly accurate results in load forecasting. Conversely, literature [19] investigated load
forecasting based on deep residual networks. Literature [20] and [21] applied deep learning models such as
CNN and support vector machines (SVM) to cable short-circuit and grounded capacitor current prediction,
respectively, showcasing the potential for widespread application of deep learning in the field of power system
prediction.

In view of the above challenges and the increasing capability of deep learning, this study comprehensively
explores methods to improve the predictability of ground currents in high voltage cables. The research objective
is to design a RIME-CNN-LSTM-Attention model that utilizes the advantages of deep learning algorithms to
overcome the limitations of traditional prediction methods. By integrating the advanced feature extraction
capability of CNN, the sequence modeling proficiency of LSTM, and the attention of the attention mechanism
to relevant data points, the proposed model aims to achieve higher prediction accuracy and robustness. The
Rime optimization algorithm is applied to further optimize the hyperparameters of the model to ensure the best
performance. The empirical results presented in this paper confirm the validity of the proposed model,
demonstrating its ability to predict ground currents with high accuracy, thus facilitating timely fault detection
and outage prevention. The significance of this research extends beyond its direct application to high-voltage
cable systems; it paves new pathways for the application of deep learning in the broader domain of power
system prediction and maintenance, thereby supporting the sustainable and resilient operation of urban electrical
infrastructures.

2. Related work
2.1The Rime Optimization Algorithm

Hang Su [22] introduced the Rime Optimization Algorithm (RIME) in February of 2023, which proves to be a
successful optimization technique leveraging the natural occurrence of rime ice. This algorithm, known as
RIME, integrates the dual strategies of exploration and exploitation within its optimization approach through
mimicking the expansion processes of both soft and hard rime types. The algorithm devises a strategy for
navigating soft rime and a piercing approach for hard rime, facilitating an adaptable transition between
extensive exploration and focused exploitation to identify the best possible solution. Hard-rime growth can
efficiently converge towards the global near-optimal solution by intersecting the present solution with the
optimal solution, enhancing accuracy and efficiency. RIME filters away inferior answers and deliberately offers
less than optimal options to improve the greedy selection process. This enhances population diversity and avoids



the algorithm from being trapped in local optima. The approach is versatile and can be used to a wide variety of
intricate optimization tasks. Each particle's condensation process is succinctly recreated, as depicted in Figure 1.
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Figure 1 Soft-rime particles motion [22]

The position of the frost particles is shown in equation (1)
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ii X represents the updated location of a particle, where i and j indicate the j-th particle within the i-th rime-
agent cluster; pestj signifies the j-th particle of the top-performing rime-agent within the rime-population, R ;

denotes the environmental factor, which varies with the number of iterations to mimic the impact of the external
surroundings and is crucial for guaranteeing the convergence of the algorithm. E represents the attachment
coefficient, influencing the likelihood of an agent's condensation and rising as the iteration count progresses, as
depicted in equation (4).

Figure 2 illustrates the puncture phenomenon.
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Figure 2 Hard-rime puncturing [22]

Equation (5) displays the formula used for the particle replacement process.
= 3= () (5

Where, () represents the normalized fitness value of the current agent, which signifies the probability
of the i-th rime-agent being chosen.

2.2Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a type of advanced neural network architecture specifically
designed to overcome the long-term dependency problem inherent in traditional Recurrent Neural Networks
(RNNs). Thanks to its unique structure, the LSTM is adept at capturing and processing long-term dependencies

within time-series datasets. Central to the LSTM's functionality is the memory cell, as described in reference [23]
and visualized in Figure 3.
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Figure 3 Structure of LSTM network

The memory unit regulates the transfer and updating of information through three gating structures, following
the equations [24].
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In the LSTM network, the vector [he1, x] is formed by concatenating the hidden state from the previous time
step, hw.1, with the current input, x. The variable Wr denotes the weights associated with the forgetting gate,
while by is the corresponding bias term. W and b, are the weights and bias for the memory cell, respectively. W;
and b; are the weights and bias for the input gate, and W, along with b, are the weights and bias for the output
gate, respectively.

The LSTM network is capable of dynamically and selectively forgetting, modifying, and emitting information,
which suits it particularly well for capturing long-term dependencies. These networks are particularly adept at
handling time-series data, especially in scenarios that involve the need to track long-range dependencies.

2.3Attention Mechanism

The Attention Mechanism (AM) replicates human attention by directing the model to certain sections of
information processing, enhancing the model's ability to concentrate on crucial information and hence
enhancing its effectiveness in handling the input. Bahdanau et al. (2014) and Luong et al. (2015), cited in
reference [25], are recognized for their seminal contributions to the development of Attention Mechanisms
within deep learning. Their research introduces an attention mechanism that assigns weights to the features
extracted by the preceding layers C and LSTM, enabling the model to focus on the spatiotemporal aspects of the
original sequence. These weighted features are then fed into the model to generate predictions. Figure 4
provides a visual representation of the attention mechanism's architecture. By employing this approach, the
expectation model can gain a deeper insight into the inherent structure of the input data, thereby enhancing the
precision of its predictive outcomes.
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Figure 4 Attention structure diagram
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In the above equations [14], C denotes the feature vector obtained after processing through the CNN network,
while hi represents the feature vector extracted by the LSTM network at the i-th time step. x corresponds to the
weight, and y represents the bias term. Equation (12) is designed to weigh the features extracted from both the
CNN and LSTM networks, and it achieves the fusion of these weights through an activation function. Equation
(13) is to pass the weights through softmax function. Ultimately, the final set of features is derived by
multiplying the LSTM's output values with the corresponding weights, as specified in equation (14). These
weighted features are subsequently fed into a series of fully connected layers, which then produce the final
predicted outcomes.

3. Methods RIME-CNN-LSTM-Attention Model

In the LSTM neural network model, the parameter configuration exerts a critical influence on the model's
recognition accuracy. Conventionally, hyperparameter selection tends to rely on empirical methods, which are
characterized by a degree of arbitrariness and lack of systematic guidance. This approach often results in
instability and a lack of generalizability in the model's performance. To tackle this challenge, the present study
utilizes the Frost Optimization Algorithm (RIME) to identify optimal settings for three critical hyperparameters
of the LSTM model: the initial learning rate, the number of neurons in the hidden layer, and the most suitable
L2 regularization coefficient.

The learning rate governs the magnitude of weight updates during training. Typically, it is set within the range
of 0.001 to 0.1. A learning rate that is too low might lead to overfitting, as the model may become too finely
tuned to the training data. Conversely, a learning rate that is too high can cause the loss function to oscillate
wildly, preventing the model from converging effectively. The number of nodes in the hidden layer is a key
factor that influences the model's complexity and its ability to capture and represent the underlying patterns in
the data. Insufficient nodes may fail to meet the training requirements, while an excessive number can lead to an
overly complex model structure, prolonging training time. The regularization parameter serves to reduce the
complexity of the LSTM model, enhancing its generalization capability and mitigating the risk of overfitting.
Figure 5 depicts the flowchart of the optimization process.
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Figure 5 Flowchart of RIME optimized LSTM parameters

The objective of this optimization routine is to pinpoint the parameter configurations for the LSTM model that
most effectively align with the dataset, thereby enhancing the model's classification accuracy and its efficacy
when dealing with extensive data samples. The architecture of the RIME-CNN-LSTM-Attention model
proposed in this research is outlined in Figure 6 below.
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Figure 6 Structure of the RIME-CNN-LSTM-Attention model

The workflow of the RIME-CNN-LSTM-Attention ground current prediction algorithm, which incorporates the
RIME-CNN-Attention framework designed in this paper, is delineated as follows:

Step 1: Preprocess the actual ground current data from the monitoring point to serve as input for the model.

Step 2: Employ CNN to perform convolutional computations and extract the foundational features from the
multi-dimensional data.

Step 3: The RIME optimization algorithm is applied to fine-tune the hyperparameters of the LSTM network,
after which the optimized LSTM is used to extract sequential features.

Step 4: Employ the Attention mechanism to apply weightings to and fuse the extracted features, thereby
enhancing their significance and representation.

Step 5: Transmit the processed features through a fully connected layer to consolidate the information.
Step 6: Derive the ground current prediction and conclude the process.

This sequence ensures a systematic and comprehensive approach to ground current prediction, leveraging the
strengths of each component in the hybrid model to achieve accurate and reliable forecasts.

4. Experimental procedures and data analysis

4.1Experimental data
The dataset for this experiment is comprised of actual grounding current data from a cable line in Beijing,

spanning from January 1, 2018, to December 30, 2018. The data were sampled daily, encompassing a total of 50
monitoring points for ground current. Given the susceptibility of the measured data to various environmental



factors and the presence of missing values within the dataset, a preprocessing step was undertaken to address
these issues. To handle missing data [26], two strategies were implemented: monitoring points with more than
50% missing data were excluded from the dataset, whereas those with 50% or less missing data were
interpolated using the median value. Following this data cleansing process, a dataset of ground current from 47
monitoring points was compiled, which forms the foundation for subsequent experimental analysis.

To provide a clearer visualization of the ground current distribution at the monitoring points, a random
monitoring point was chosen for graphical representation, as shown in Figure 7 below.
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Figure 7 Ground current distribution at monitoring point 20

Figure 7 illustrates that the ground currents recorded at monitoring point 20 predominantly fall within the range
of 0 to 0.4 mA, suggesting that the ground currents are generally low for the majority of the time. Nonetheless,
there are instances where the ground current exceeds 0.6 mA, which could be attributed to certain specific
events or abnormal conditions.

To provide a comprehensive view of the distribution of ground currents across all monitoring points, Figure 8 is
presented below. This figure will further elucidate the variability and patterns of ground currents within the
entire dataset.
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Figure 8 Ground current box diagram for all monitoring points



The descriptive statistics, complemented by the visualization of box plots, reveal that the mean values of ground
currents across all monitoring points lie within the range of 0.288 to 0.328, while the standard deviations fall
between 0.184 and 0.215, signifying a moderate level of data dispersion. The majority of minimum values are at
0, although some monitoring points exhibit slightly higher minimums, which could be attributed to
measurement inaccuracies or artifacts of the data preprocessing stage. The median values are slightly greater
than the means, suggesting a potential right-skew in the data distribution. The box height and whisker length in
the box plots provide insights into the variability of ground current data at different sites. Sites with taller boxes
and longer whiskers indicate greater variability in ground currents, which may be influenced by specific
environmental factors or occurrences. Additionally, a few monitoring points exhibit outliers that significantly
deviate from the rest of the data, potentially indicating unique events or anomalies, such as equipment
malfunctions, severe weather conditions, or human interventions.

4.2Evaluation Criteria
The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were chosen as the evaluation metrics

for the model, as referenced in [27], and are defined by the following equations.
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4.3RIME parameter optimization
The dataset is partitioned such that 70% of the data is assigned to the training set, which is used for model

training, and the remaining 30% is set aside as the test set, used to assess the model's efficacy.

The preliminary parameter settings for the optimized model are outlined in Table 1. The parameters subject to
optimization are the number of units in the hidden layer, the starting learning rate, and the optimal L2
regularization coefficient.

Table 1 Initial Parameter Values of the Optimization Model.

Parameters Value(or range of values)
Population size 6
Maximum number of iterations 10
Number of optimization parameters 3
Number of hidden layer units [4,128]
Initial learning rate 0.1,0.01,0.001
Optimal L2 regularization factor [0.00001,0.01]
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Figure 9 Optimization algorithm fitness change curve
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As the iteration progresses, the RIME algorithm continuously refines and updates the number of hidden layer
units, the initial learning rate, and the optimal L2 regularization coefficient. The convergence curve is depicted
in Figure 9, revealing the optimal hyperparameters: the optimal number of hidden layer units is 96, the optimal
initial learning rate is 0.01, and the optimal L2 regularization coefficient is 0.00017.

4.4Analysis of experimental results

With the optimized parameters established by the RIME algorithm, the architecture of the RIME-CNN-LSTM-
Attention network is accordingly defined. Figures 10 and 11 provide comparative graphs showing the actual
versus predicted ground currents for every monitoring point in the training set and the test set, respectively.
These visual comparisons enable a straightforward evaluation of the model's accuracy during both the training
and testing stages. Figure 12 and Figure 13, on the other hand, display the error curves for the ground current
predictions at each monitoring point in the training and test sets, providing insights into the accuracy and
consistency of the model's predictions.
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Table 2 Model performance evaluation table

RMSE MAE R?
Training set 0.0119 0.0078 0.9979
Test set 0.0771 0.0547 0.9251

The statistics outlined in Table 2 highlight the model's outstanding performance on the training dataset, with an
R? value close to 1, and remarkably low RMSE and MAE values. These indicators suggest an almost ideal
alignment with the training data. Nevertheless, when the model is assessed on the test dataset, there is a
noticeable drop in its performance, which points to the likelihood of overfitting. Overfitting happens when a
model is excessively intricate or has memorized the training data, including its noise, leading to suboptimal
performance on previously unencountered data.
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The R? value of 0.9251 for the test set, while considerable, is substantially lower than that for the training set,
signifying a reduced ability of the model to predict accurately on novel data. This discrepancy suggests that the
model may be capturing idiosyncrasies in the training data that do not translate well to the test set, leading to a
loss of predictive precision for new observations.

Table 3 Evaluating the predictive outcomes across various model types

Models RMSE

CNN 0.1798

LSTM 0.1603
CNN-LSTM-Attention 0.1284
RIME-CNN-LSTM-Attention 0.0771

Table 3 offers a comparative analysis of the experimental outcomes for various deep learning models applied to
the ground current prediction task using the dataset under consideration. Notably, the results demonstrate a
significant disparity among the models. Each model outperforms the traditional CNN, suggesting that the
integration of temporal feature extraction and the attention mechanism significantly enhances the model's
predictive capabilities.

Furthermore, the hybrid model, which combines CNN, LSTM, and Attention, outperforms the individual
components. This suggests that when dealing with large-scale data, a single model may struggle to fully capture
the intricate interrelationships within the data. The hybrid model's approach, however, bolsters the model's
capacity to extract and represent data features effectively.

The inclusion of bi-directional LSTM encoding in the model facilitates a more comprehensive capture of
features across different contexts, contributing to improved performance. Additionally, the use of Attention
ensures that the model assigns appropriate weights to the features, leading to more robust detection results.

The CNN-LSTM-Attention model, after optimization, achieves a significantly reduced RMSE of 0.1284.
Subsequent optimization of the model using the RIME algorithm further enhances its overall performance, with
the RMSE being reduced to 0.0771. This outcome corroborates the efficacy of the proposed model as outlined in
this paper.

5. Discussion

This research presents an innovative deep learning architecture, the RIME-CNN-LSTM-Attention model,
designed to tackle the complex task of forecasting ground currents in high-voltage cable systems. The research
yielded the following key findings:

(1) Model Innovation: The combination of CNN, LSTM, and the Attention mechanism works in concert to
effectively encapsulate spatial, temporal, and pivotal information from the data, significantly improving the
model's predictive precision and resilience.

(2) Hyperparameter Optimization: The application of the RIME algorithm for optimizing the LSTM network's
hyperparameters prevents the model from converging to local optima and improves its generalization
capabilities and prediction accuracy.

(3) Performance Enhancement: The proposed RIME-CNN-LSTM-Attention model exhibits substantial
enhancements in performance metrics like RMSE (Root Mean Square Error) and MAE (Mean Absolute Error)
when contrasted with conventional CNN, LSTM, and CNN-LSTM-Attention models, highlighting its
effectiveness and advantage.
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