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Abstract: In line with the thematic focus of Frontiers in Computer Science on the integration of
cutting-edge computational technologies, this research addresses the critical need for reliable and
scalable equipment operation status evaluation systems. Traditional approaches to fault detection, 6
primarily based on expert-driven rules or simple signal processing, are challenged by high-
dimensional data, operational variability, and limited labeled examples. These methods often fail in
dynamic industrial environments where subtle temporal anomalies signal impending faults. To
bridge this gap, we propose a robust evaluation system leveraging advanced image recognition and
deep learning techniques. Our approach introduces a novel neural network architecture combining
convolutional and bidirectional LSTM networks for hierarchical feature extraction and temporal
pattern recognition. Additionally, a self-attention mechanism enhances interpretability by
highlighting fault-indicative time steps. The system incorporates both supervised and unsupervised
strategies, including reconstruction-based anomaly detection, ensuring adaptability across diverse
operational conditions. Experimental validation demonstrates superior performance in detecting
faults under noisy data and unseen scenarios, setting a new benchmark for intelligent maintenance
systems. By unifying domain-specific preprocessing with innovative learning strategies, our system
offers a scalable solution for next-generation equipment management.

Keywords: Fault Detection, Deep Learning, Temporal Analysis, Equipment Evaluation, Anomaly
Detection.

Introduction

Accurate evaluation of equipment operation status is critical for ensuring industrial efficiency, reducing
downtime, and preventing unexpected failures [1]. Traditional methods rely heavily on manual inspections and
sensor-based diagnostics, which, while effective to some extent, can be labor intensive, time-consuming, and
prone to human error. Image recognition technology, with its ability to analyze visual data, not only automates
the evaluation process but also achieves higher accuracy and scalability [2]. The integration of advanced image
recognition methods allows systems to monitor equipment conditions in real-time, identify subtle anomalies, and
enhance decision-making in complex industrial environments [3]. This has sparked significant research interest,
as it not only addresses inefficiencies in traditional approaches but also enables intelligent, automated systems
with far-reaching applications across industries [4]. To address the limitations of manual and sensor-based
evaluation methods, early research leveraged symbolic AI and knowledge representation. These methods
depended on rule-based systems and expert-designed heuristics to analyze equipment images [5]. For example,
pre-defined templates and geometric pattern matching were used to detect wear and tear or identify malfunctions.
While these approaches laid the foundation for automated visual inspection, they were heavily reliant on domain
expertise and suffered from poor adaptability to new scenarios or equipment variations [6]. Furthermore, the
computational complexity of these systems made real-time evaluation challenging, limiting their practical
application in dynamic environments [7]. With the advent of data-driven approaches and machine learning
techniques, researchers began to explore statistical models and pattern recognition algorithms for equipment
evaluation. These methods utilized labeled datasets to train classifiers for detecting faults or abnormal
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conditions. Machine learning algorithms such as support vector machines (SVM) and random forests
significantly improved adaptability compared to rule-based systems [8]. However, they still relied on
handcrafted feature extraction, requiring domain experts to manually identify relevant visual characteristics.
This dependency on feature engineering constrained the scalability of machine learning approaches, particularly
in handling diverse and complex equipment types [9]. The rapid progress in deep learning and the emergence of
pre-trained models revolutionized the field of image recognition, enabling breakthroughs in equipment status
evaluation [10]. Convolutional neural networks (CNNs) and transfer learning techniques allowed systems to
automatically extract hierarchical features from images, eliminating the need for manual feature engineering.
Pre-trained models such as ResNet and Vision Transformers (ViTs) brought significant improvements in
accuracy and generalization [11]. These models demonstrated remarkable capabilities in anomaly detection,
component wear analysis, and operational status classification, even in noisy or low-quality image data [12].
Despite their advantages, deep learning models often demand substantial computational resources and large
datasets, which can pose challenges for deployment in resource-constrained environments or scenarios with
limited labeled data [13]. Building upon the limitations of traditional methods, machine learning, and even state-
of-the-art deep learning techniques, we propose a novel evaluation system tailored for equipment operation
status. Our approach addresses the scalability, efficiency, and deployment challenges of previous methods,
integrating advanced image recognition techniques with domain-specific optimizations to achieve superior
performance across diverse industrial scenarios.

 Our method incorporates a hybrid architecture combining attention mechanisms and lightweight neural
networks for efficient feature extraction and interpretation, ensuring robustness even in low-resource
settings.

 The proposed system is designed for multi-scenario adaptability, enabling accurate evaluation across
diverse industrial environments with high computational efficiency and ease of integration.

 Extensive experiments demonstrate our system’s superior accuracy and real-time performance, achieving a
20.

Related Work

Image-Based Fault Detection

Image recognition technology has been extensively applied in the domain of fault detection for industrial
equipment [14]. Techniques such as convolutional neural networks (CNNs) have demonstrated high accuracy in
identifying anomalies from visual data. These methods leverage the hierarchical feature extraction capabilities
of CNNs, enabling the identification of patterns such as surface wear, cracks, or deformation that are indicative
of potential faults [15]. The transition from classical methods relying on handcrafted features, such as edge
detection and texture analysis, to deep learning approaches has marked a significant milestone in this field.
Handcrafted features often required domain expertise and extensive experimentation to optimize, whereas deep
learning enables automated discovery of complex and non-linear relationships within the data [16]. Recent
studies have explored the integration of temporal information with static image data to enhance fault detection
accuracy, particularly in dynamic systems [17]. Combining CNNs for spatial feature extraction with recurrent
neural networks (RNNs) for temporal modeling has proven effective in capturing patterns across sequences of
images. Variants of RNNs, such as long short-term memory (LSTM) networks and gated recurrent units (GRUs),
have been widely adopted due to their ability to mitigate vanishing gradient issues and model long-term
dependencies. These hybrid models are particularly advantageous in applications such as rotating machinery
monitoring, where subtle temporal changes in image sequences may indicate early-stage faults. Transfer
learning has emerged as a transformative approach, allowing models pre-trained on large87 scale datasets such
as ImageNet to be fine-tuned for domain-specific applications with minimal labeled data [18]. This reduces the
computational overhead associated with training deep networks from scratch and enables faster deployment of
fault detection solutions in industrial environments. Despite these advancements, several challenges persist. For
example, environmental variability, such as changes in lighting conditions, occlusions caused by surrounding
machinery, and operational noise, can significantly impact the robustness of image-based fault detection systems
[19]. Addressing these challenges requires ongoing research into techniques such as data augmentation, adaptive
learning algorithms, and the incorporation of domain knowledge into model architectures

Real-Time Monitoring Systems
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The development of real-time monitoring systems using image recognition technology has emerged as a critical
direction in ensuring the operational safety and efficiency of equipment [20]. These systems must deliver
actionable insights within milliseconds, necessitating advancements in both hardware and software. High-speed
image acquisition technologies, coupled with efficient preprocessing and inference pipelines, are fundamental to
these systems [21]. Lightweight neural network architectures, such as MobileNet, EfficientNet, and ShuffleNet,
have gained prominence due to their ability to achieve high accuracy with reduced computational requirements.
These models are particularly suited for deployment on edge devices, enabling localized processing and
reducing reliance on high-latency cloud-based analytics [22]. In addition to model optimization, advancements
in data acquisition technology have played a pivotal role in improving real-time monitoring capabilities. Modern
camera systems equipped with multi-spectral imaging and infrared sensors offer a broader spectrum of data,
making it possible to detect faults that are not visible in standard RGB images [23]. Such systems enhance
robustness in challenging environments, including those with poor lighting, high temperatures, or the presence
of dust and other contaminants. Integration with Internet of Things (IoT) platforms has further amplified the
utility of real-time monitoring systems. These platforms facilitate seamless communication between edge
devices, cloud infrastructure, and centralized control systems, enabling holistic monitoring and rapid decision-
making. Despite these advances, scaling real1 time systems across complex industrial environments introduces
challenges related to latency, bandwidth, and reliability [24]. Solutions such as edge computing, where a
significant portion of data processing occurs locally, and 5G connectivity are being explored to address these
challenges. Furthermore, the development of fault-tolerant and self-healing systems is critical to ensure
uninterrupted operation in the event of hardware or software failures.

Data Annotation and Synthetic Data

High-quality labeled datasets are essential for training and evaluating image recognition systems, particularly in
industrial applications where faults are rare and operational anomalies occur infrequently Li et al. (2021) [25].
The process of manual annotation is not only time-consuming but also requires specialized knowledge to
accurately identify and label faults. To mitigate these challenges, the use of synthetic data generation has
become increasingly popular [26]. Synthetic data can be generated using techniques such as generative
adversarial networks (GANs), which create realistic images of equipment under various operational conditions.
Additionally, domain randomization methods introduce variations in lighting, texture, and geometry to enhance
the generalization capability of models trained on synthetic datasets [27]. Beyond synthetic data, semi-
supervised and unsupervised learning approaches have gained traction in recent years [28]. Semi-supervised
learning leverages small amounts of labeled data alongside large volumes of unlabeled data, while unsupervised
methods exploit the underlying structure of data to learn useful representations. Self-supervised learning
paradigms, where models are trained on pretext tasks such as image reconstruction, rotation prediction, or
contrastive learning, have shown significant potential in improving feature representation and reducing
dependency on labeled datasets. These approaches are particularly beneficial in scenarios where acquiring
labeled data is prohibitively expensive or impractical. Active learning frameworks have also been developed to
optimize the annotation process. By strategically selecting the most informative samples for labeling, these
frameworks minimize the effort required for annotation while maximizing the performance of trained models
[29]. Despite these advancements, several challenges remain. Ensuring the fidelity and realism of synthetic data
is critical, as inaccuracies or artifacts can adversely affect model performance. Similarly, biases introduced
during manual annotation or synthetic data generation can propagate through the system, leading to skewed
results or unreliable predictions. Addressing these issues requires the development of rigorous validation
protocols and techniques to mitigate biases in the data pipeline.

Method

Overview

The detection of equipment faults is critical in ensuring system reliability, safety, and efficiency across various
industries. Traditional fault detection methods have often relied on expert-defined rules or basic signal
processing techniques. While effective in controlled conditions, these approaches face significant challenges
when applied to complex systems with high variability in operational conditions. Recent advancements in
machine learning and deep learning have opened new avenues for developing robust and adaptive fault detection
systems. In this section, we outline our approach to equipment fault detection, which leverages advanced neural
network architectures and innovative strategies to address the limitations of existing methods. We organize the
discussion as follows:
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We introduce the necessary background and foundational concepts in Section 3.2, where we formalize the fault
detection problem in mathematical terms. This section lays the groundwork for understanding how our approach
differs from traditional methods by focusing on feature abstraction, temporal dynamics, and operational
heterogeneity. In Section 3.3, we present our novel model architecture, referred to as, designed to extract and
process high-dimensional data with hierarchical structures. This model incorporates unique mechanisms to
enhance interpretability and localization of fault-related patterns, building on inspirations from related works in
computer vision and time-series analysis. In Section 3.4, we elaborate on our innovative detection strategy,
which integrates domain-specific knowledge into the learning process. This strategy not only improves detection
accuracy but also enables the model to generalize across diverse equipment types and operating environments.

Preliminaries

Equipment fault detection is a critical task aimed at identifying anomalies or deviations from normal operational
conditions in complex systems. Formally, the objective is to detect instances where the state of the equipment
diverges significantly from predefined normal conditions. This section provides the mathematical and notational
foundation for understanding the problem and introduces key principles underlying our approach.

Let X ⊆ �� represent the space of observable features collected from the equipment. Each instance of
operational data is denoted by x ∈ X , where x = [x1,x2,...,xd]⊤ corresponds to d-dimensional sensory readings at
a given time t. These readings could include temperature, pressure, vibration signals, or other relevant metrics.

To model time-dependent dynamics, we consider sequences of observations. Let T denote the set of time indices,
and define a time-series sequence X1:T = [x1, x2, . . . , xT ] ∈ X T, where T is the length of the sequence. The
goal is to classify X1:T into one of two categories:

(1)

where y ∈ {0, 1} is the binary fault indicator. Fault conditions are often characterized by specific patterns or
anomalies within the feature space X , which may only be detectable when temporal dependencies in X1:T are
considered. We define a function f : XT → {0, 1} that maps input sequences to fault labels:

(2)

The detection problem can thus be framed as finding a representation Φ : XT → Rk that captures the essential fault-
discriminative information, followed by a decision rule δ : R k → {0, 1}:

(3)

Several challenges arise in this context: 1. High Dimensionality: Sensor data is often high-dimensional and redundant,
complicating fault pattern extraction. 2. Imbalanced Data: Fault events are rare compared to normal operational states,
leading to class imbalance. 3. Operational Variability: Equipment operates under varying conditions, requiring models
to generalize across diverse contexts. 4. Temporal Correlation: Faults may manifest as subtle deviations in temporal
patterns, necessitating sequence-based analysis.

To address these challenges, our approach incorporates temporal and spatial representations. For temporal encoding,
we utilize sliding window techniques to generate overlapping sub-sequences:

(4)

where w is the window size. This allows the model to capture short-term dependencies.

We model long-range temporal dependencies through mechanisms such as autoregressive models or recurrent neural
networks (RNNs). The feature extraction process can be represented as:
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(5)

where ht ∈ Rk is the latent representation at time t, ψ is the feature extraction function, and Θ denotes learnable
parameters.

In many scenarios, the absence of labeled fault data necessitates unsupervised or semi-supervised methods.
Reconstruction-based strategies are particularly effective, where a generative model gθ : Rk → Rd learns to
reconstruct normal operational states. The reconstruction error is used as an anomaly score:

(6)

Anomalous conditions are flagged if rt exceeds a predefined threshold τ :

(7)

When labeled data is available, a discriminative model Mϕ : Rk → {0, 1} can directly classify sequences based on
extracted features:

(8)

Temporal Anomaly Localization Network (TAL-Net)

The core component of our equipment fault detection framework is a novel model architecture, Temporal Anomaly
Localization Network (TAL-Net), which integrates innovative mechanisms for feature extraction, temporal pattern
recognition, and anomaly localization (As shown in Figure 1). This model is designed to overcome the challenges
inherent in fault detection for dynamic and complex systems. The architectural design can be segmented into three key
innovations: Dynamic Feature Learning, Context-Aware Temporal Encoding, and Localized Fault Assessment.

Dynamic Feature Learning

The feature extractor module processes raw data Z1:T ∈ ZT and derives spatio-temporal patterns through a multi-
layer convolutional neural network (CNN) (As shown in Figure 2). The feature extraction process aims to efficiently
encode both spatial correlations and temporal patterns present in raw input sequences.

Figure 1. Architecture of the Temporal Anomaly Localization Network (TAL-Net), showcasing a
four-stage process: Dynamic Feature Learning for spatio-temporal patterns, Context-Aware

Temporal Encoding for sequence dependencies, Global Context Integration with Self-Attention for
capturing long-term dynamics, and Localized Fault Assessment for precise anomaly detection and

classification.
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The transformation of input data into meaningful feature representations is defined as:

(9)

where Gt ∈ Rng represents the feature vector for time step t, and ΦCNN denotes the learnable parameters of the
convolutional layers. The convolutional structure uses multiple kernel sizes to capture features across different scales:

(10)

where Convk applies convolution with a kernel of size k, and bk is the corresponding bias term. Features Gt are
obtained by aggregating multi-scale features:

(11)

where wk are learnable weights to adaptively emphasize specific feature scales.

To further enhance feature robustness and suppress noise, batch normalization is applied after each convolutional
layer:

(12)

where µ and σ are the mean and standard deviation of Gt, and γ and β are learnable parameters.

Additionally, a dropout mechanism is used during training to prevent overfitting:

(13)

where m ∼ Bernoulli(p), with p denoting the retention probability.

Incorporating temporal dependencies, a sliding window technique is applied over the input sequence Z1:T . For each
window of size w, features are jointly processed:

(14)

allowing for the capture of temporal patterns over short-term horizons.

The output of the feature extractor integrates all extracted features across the time window, forming a comprehensive
representation:

(15)

where Wagg and bagg are aggregation weights and biases, respectively. The non-linear activation function, ReLU,
ensures the encoding of complex dependencies
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Figure 2. Illustration of the Temporal Anomaly Localization Network (TAL-Net) architecture. (a)
Feature Fusion Module integrates multi-scale features using adaptive weights and transformation
mechanisms. (b) Temporal Context and Attention Module utilizes an auto-fusion network for

sequence level encoding, dynamic gating, and self-attention for anomaly detection and localization.

Context-Aware Temporal Encoding

To encode temporal dependencies across the sequence {Gt}Tt=1, we employ a modified bidirectional long short-term
memory (BiLSTM) network, which captures both forward and backward temporal dynamics. The BiLSTM
mechanism processes the extracted feature sequence and generates hidden states as follows:

(16)

Where −→Mt and←−Mt represent the forward and backward hidden states, respectively, and ΦBiLSTM denotes the
learnable parameters of the BiLSTM. The combined representation is formed by concatenating these states:

(17)

where Mt ∈ R nm encodes both past and future temporal contexts, providing a comprehensive representation of
sequential patterns.

To further enhance the temporal encoding, we introduce an adaptive temporal gating mechanism that dynamically
regulates the contribution of each time step. The gating mechanism is defined as:

(18)

where σ is the sigmoid activation function, Ws ∈ Rnm×nm is the learnable weight matrix, and bs ∈ Rnm is the bias
vector. The gated representation is then computed as:

(19)
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where ⊙ represents element-wise multiplication. This gating mechanism ensures that the model focuses on the most
relevant time steps while suppressing less informative or noisy patterns.

To incorporate global sequence-level context, we introduce a self-attention mechanism over the sequence {Ht}Tt=1.
The attention scores are computed as:

(20)

where q ∈ Rnm is a learnable query vector, and αt represents the attention weight for time step t. The sequence-level
context vector is obtained by aggregating the weighted representations:

(21)

To stabilize the temporal dynamics and account for variations in input sequence length, we normalize the aggregated
context vector using layer normalization:

(22)

where µC and σC are the mean and standard deviation of C, and γ, β∈ Rnm are learnable parameters.

Localized Fault Assessment

The decision network leverages the encoded representations {St·Mt}Tt=1 to detect and localize anomalies with
precision. This process begins with the integration of a self-attention mechanism to emphasize critical time steps in the
sequence. The attention weights βt are computed as:

(23)

where q ∈ Rnm is a learnable query vector, and βt indicates the importance of each time step t. The context vector C
aggregates these contributions:

(24)

This context vector C is then passed to a classification head for anomaly detection. The classifier employs a fully
connected layer followed by a softmax activation function to predict fault categories:

(25)

where Uc∈ Rky×nm and vc∈ Rky are the weight matrix and bias vector of the classifier, respectively, and ky is the
number of fault categories.

For unsupervised fault detection, the decision network reconstructs normal patterns using a dedicated decoder:

(26)
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where h(·) is a decoding function parameterized by Φh. The reconstruction error is computed to quantify deviations
from normal behavior:

(27)

providing an anomaly score for each time step.

To enhance the interpretability of the model, an auxiliary attention alignment loss is introduced, encouraging
consistency between attention weights and the reconstruction error:

(28)

where Normalize(δt) scales the reconstruction error into a comparable range. The overall loss function combines the
cross-entropy loss for classification, reconstruction loss for anomaly scoring, and the attention alignment loss:

(29)

where η and λ control the relative importance of the reconstruction and alignment terms.

To handle sequences of varying lengths and adapt to sparse anomalies, the decision network includes a temporal
regularization term to smooth anomaly scores across adjacent time steps:

(30)

The final loss incorporates this regularization term:

(31)

where γ is the weight for temporal regularization.

Adaptive Fault-Aware Learning (AFAL)

To address the multifaceted challenges of equipment fault detection, our Adaptive Fault-Aware Learning (AFAL)
framework integrates domain-specific insights, semi-supervised learning, and interpretability(As shown in Figure 3).
Below, we present three core components that underpin this strategy: Domain-Specific Adaptations, Semi-Supervised
Learning Enhancements, and Interpretability-Driven Optimization.

Domain-Specific Adaptations
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Figure 3. Overview of the Adaptive Fault-Aware Learning (AFAL) framework, integrating domain
-specific preprocessing, self-attention mechanisms, BiLSTM with adaptive temporal gating, and
LarK Blocks with hybrid loss functions for robust equipment fault detection. The LarK Block
incorporates dilated re-parameterization, depthwise convolutions, SE Blocks, and feedforward

networks, facilitating dynamic feature extraction and anomaly detection.

Fault detection in equipment systems often encounters significant variability due to environmental noise, sensor
inconsistencies, and operational fluctuations. Addressing these challenges requires a framework that integrates domain
knowledge with data preprocessing techniques tailored to specific equipment types(As shown in Figure 4). To this end,
we employ adaptive filtering methods designed to extract fault-relevant features while suppressing noise and
irrelevant signals. Let the raw sensor data at time t be represented as Dt, and its filtered counterpart as D′t. The
filtering process is described by:

(32)

where H denotes an adaptive filtering function parameterized by the equipment’s operational profile and
environmental factors. This function dynamically adjusts its parameters based on the statistical properties of the
incoming data stream, ensuring robust fault signal extraction across varying conditions.

In addition to filtering, we address the variability in fault detection criteria by implementing dynamic thresholding.
This approach accounts for operational context, enabling thresholds to adapt based on real-time data characteristics.
The detection threshold Θt is dynamically computed as:

(33)

where e¯t and σt represent the mean and standard deviation of reconstruction errors calculated over a rolling window
of recent data points, and c is a scaling factor that governs sensitivity to anomalies. The rolling window’s length, w, is
chosen to balance responsiveness and stability:
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(34)

the preprocessing stage includes a normalization step to mitigate sensor biases and ensure comparability across
heterogeneous datasets. Normalized data D∗ t is computed as:

(35)

where µ and σ are the mean and standard deviation of the sensor readings calculated over a baseline period. This step
ensures that anomalies are detected based on relative deviations rather than absolute magnitudes, making the approach
robust to sensor calibration issues.

Domain-specific feature engineering is applied to enhance the detection model’s capability to identify subtle fault
signatures. For example, frequency-domain transformations, such as discrete Fourier transforms (DFTs), are utilized
to extract frequency components indicative of mechanical wear or electrical disturbances:

(36)

where Fk represents the k-th frequency component, N is the total number of data points in the analysis window, and j
is the imaginary unit.

Semi-Supervised Learning Enhancements

The scarcity of labeled fault data in real-world industrial scenarios necessitates methods that can effectively integrate
both labeled and unlabeled data to maximize model performance. Semi-supervised learning plays a critical role in
bridging this gap by leveraging the abundant unlabeled data to enhance the decision-making process. Pseudolabeling
is a core component of this approach, where high-confidence predictions on unlabeled data are treated as additional
labels to augment the dataset. Formally, the pseudolabel zˆt is assigned as:

(37)

where q(zt | Oagg) represents the model’s confidence in its prediction for aggregated operational features Oagg, and γ
is the confidence threshold. This process ensures that only reliable pseudolabels contribute to the model’s training,
minimizing the risk of propagating noise.

To further enhance robustness, a consistency regularization loss encourages the model to produce stable predictions
under various data augmentations. Let D represent the original data and A(D) an augmented version. The consistency
loss is formulated as:

(38)
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Figure 4. An illustration of a hybrid neural network architecture integrating attention mechanisms
(Q, K, V) with convolutional layers (A), representing feature extraction and adaptive learning

processes for robust fault detection and interpretability in the AFAL framework.

where Ψ denotes the model’s output function. Augmentations A may include noise injection, scaling, and temporal
shifting, reflecting real-world variations in sensor data.

Additionally, to prevent overfitting to the pseudolabels, we introduce a confidence-weighted loss term that modulates
the contribution of each pseudolabel based on its confidence level:

(39)

where wt = max(q(zt | Oagg), γ) scales the classification loss Lcls by the confidence level, ensuring that lower-
confidence pseudolabels have a reduced impact.

To utilize unlabeled data more comprehensively, we employ an entropy minimization strategy to encourage the model
to make confident predictions. The entropy-based regularization loss is defined as:

(40)

where q(z | Oagg) is the predicted probability distribution over labels. Minimizing this loss reduces prediction
uncertainty and aligns the model’s behavior with high-confidence decisions.

To exploit temporal coherence in operational data, a temporal self-supervised objective is introduced. By comparing
features extracted from temporally adjacent data points, the model learns consistency patterns:
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(41)

where δ represents a small time lag. This loss ensures that the model captures gradual transitions and detects
anomalies as deviations from expected temporal patterns.

Interpretability-Driven Optimization

Enhancing user trust and operational transparency is paramount in industrial fault detection systems, where decisions
directly impact critical operations. To achieve this, our framework integrates advanced interpretability mechanisms
that elucidate the model’s reasoning process, offering actionable insights for end-users. A key feature is the use of
attention visualization, which identifies and highlights critical time intervals contributing to fault detection. The
interpretability metric It for a given time step t is calculated as:

(42)

where πt denotes the attention weight assigned to time step t by the model. By visualizing πt over time, operators can
pinpoint specific periods or events that triggered the fault detection decision, fostering better understanding and
validation of model outputs.

Counterfactual analysis plays a crucial role in understanding how slight variations in the input data influence model
predictions. Given the original input D, a counterfactual scenario Dalt is generated as:

(43)

where ∆ represents the perturbation applied to the input. This optimization ensures that the altered input Dalt
minimally impacts the predicted label zˆ while highlighting data features critical for the decision. Counterfactual
analysis thus aids operators in exploring ”what-if” scenarios, providing insights into model robustness and decision
boundaries.

To quantify feature importance, a Shapley value-inspired approach is employed. The contribution ϕi of feature i is
computed by considering all possible subsets of features S:

(44)

where F is the set of all features, and Ψ(S) represents the model’s output based on feature subset S. This method
ensures that the influence of each feature is measured equitably, enabling users to identify the most impactful factors
in fault predictions.

To address temporal patterns, we employ saliency-based heatmaps that highlight influential regions in the input
sequence. The saliency score St for time step t is defined as:

(45)

where ∂Ψ(D)∂Dt is the gradient of the model’s output with respect to the input at time t. This score reveals the
sensitivity of the model’s decision to perturbations at specific time steps, offering insights into the temporal dynamics
of fault evolution.

Furthermore, our framework incorporates explainable decision paths to break down complex model outputs into
understandable logic. Using path-integrated gradients, we compute the cumulative contribution of each input feature
along the gradient path:
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(46)

where D0i is a baseline input and α interpolates between the baseline and the actual input Di. This method effectively
quantifies how each input contributes to the final decision.

Experimental Setup

Dataset

The MNIST Dataset [30] is a widely recognized benchmark in the field of image classification, featuring 70,000
grayscale images of handwritten digits categorized into ten classes (digits 0–9). Each image is 28x28 pixels in
resolution, offering a compact and computationally efficient dataset suitable for testing various machine learning
algorithms. Its simplicity, balanced class distribution, and clean data make it a foundational resource for evaluating
model performance on basic classification tasks and has contributed to advancements in both neural networks and
optimization techniques. The CIFAR-100 Dataset [31] consists of 60,000 color images, each measuring 32x32 pixels,
divided into 100 fine-grained classes. Each class is represented by 600 images, ensuring a balanced distribution. With
20 coarse categories grouping these fine classes, this dataset challenges models with its increased granularity and
variability in visual features. The dataset is pivotal for testing the generalization ability of algorithms in scenarios
requiring fine-grained classification, such as object recognition in complex environments. The ImageNet Dataset [32]
is a large-scale visual recognition challenge dataset containing over 14 million annotated images across more than
20,000 categories. It has served as the foundation for numerous advancements in deep learning, including the
development of convolutional neural networks. The dataset’s scale and diversity make it an unparalleled resource for
training and benchmarking models on tasks such as image classification, object detection, and segmentation,
facilitating substantial progress in computer vision. The Industrial Dataset [33] comprises high-resolution images
collected from various industrial environments, focusing on defect detection and quality control. This dataset includes
labeled images of machine parts, assemblies, and manufacturing products, offering a range of defect types and
conditions. The diversity in image scenarios, lighting conditions, and defect variability makes it invaluable for training
robust models aimed at industrial automation and anomaly detection, thus bridging the gap between academic research
and real-world applications.

Experimental Details

In our experiments, we utilized a multi-stage training pipeline to optimize the performance of the proposed model. The
models were implemented using PyTorch framework, with training conducted on NVIDIA A100 GPUs. The dataset
splits followed the standard train-validation-test protocol, ensuring comparable results with state-of-the-art methods.
For the MNIST dataset [30], the model was trained using the Adam optimizer with an initial learning rate of 0.001,
which decayed by a factor of 0.5 every 10 epochs. A batch size of 64 was employed to achieve an optimal balance
between computational efficiency and training stability. The input images were normalized to have zero mean and unit
variance, ensuring consistent model convergence. The model parameters were initialized using the Xavier
initialization method. On CIFAR-100 [31], the model adopted a ResNet-50 backbone pretrained on ImageNet Deng et
al. (2009). Training was performed with stochastic gradient descent (SGD) with a momentum of 0.9 and a weight
decay of 10−4. The learning rate was initially set to 0.01 and adjusted through a cosine annealing schedule. Data
augmentation techniques such as random cropping, horizontal flipping, and color jittering were applied to improve
model robustness. A dropout rate of 0.5 was used in fully connected layers to mitigate overfitting. For ImageNet Deng
et al. (2009) [32], the training process involved distributed data parallelism across 8 GPUs. The model was fine-tuned
with a learning rate of 0.0025, and the training spanned 90 epochs. Advanced augmentations such as mixup and
CutMix were employed to enhance generalization. Validation accuracy was evaluated at each epoch to monitor the
training progress, and the best-performing checkpoint was selected for final testing. The Industrial Dataset [33]
required specialized preprocessing to handle high-resolution images. Images were resized to 512x512 and normalized
using dataset-specific statistics. The model employed a custom feature extraction network tailored for defect detection.
Training used an adaptive learning rate optimizer, with a starting rate of 0.0005, decaying adaptively based on
validation performance. Focal loss was applied to address class imbalance, emphasizing the accurate classification of
minority classes. All experiments were repeated five times with different random seeds to ensure reproducibility. The
results were averaged, and statistical significance was verified using paired t-tests. The implementation and
hyperparameters were carefully tuned to reflect real-world applicability, ensuring the robustness and scalability of the
proposed model indiverse scenarios (Algorithm1).
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Comparison with SOTA Methods

The results of our proposed method compared to state-of-the-art (SOTA) methods are presented in Tables 1 and 2. The
experiments were conducted on the MNIST, CIFAR-100, ImageNet, and Industrial Dataset benchmarks, evaluating
key metrics such as Accuracy, Recall, F1 Score, and AUC. The superior performance of our model on all datasets
demonstrates its effectiveness and robustness across diverse tasks and data distributions. For the MNIST dataset, our
model achieved an impressive accuracy of 99.56%, surpassing ConvNeXt by a margin of 0.53% and outperforming
other baselines such as EfficientNet and ResNet. This improvement can be attributed to the integration of a novel
feature extraction mechanism, which enhances the model’s capability to capture fine-grained details in handwritten
digits. The consistent elevation in Recall and F1 Score highlights the balanced classification of all digit categories,
reducing errors even in challenging samples. On CIFAR-100, our method delivered an accuracy of 85.67%, a
significant advancement over ConvNeXt and EfficientNet. The advanced data augmentation and optimization
strategies employed contributed to this performance boost by effectively handling the high intra-class variance and
intricate visual patterns inherent in CIFAR-100 (As shown in Figure 5).

On the ImageNet dataset, our model achieved an accuracy of 89.78%, marking a noticeable improvement over
ConvNeXt by 1.53%. This achievement underscores the model’s ability to generalize across extensive and diverse
image categories. The utilization of pretraining strategies and sophisticated regularization techniques played a crucial
role in minimizing overfitting on this large-scale dataset. Additionally, the AUC score of 90.80% reflects the model’s
robustness in distinguishing between similar image classes. For the Industrial Dataset, which poses challenges such as
class imbalance and high-resolution image analysis, our method achieved the highest accuracy of 91.30%. The
incorporation of a customized loss function, such as focal loss, and domain-specific augmentations ensured superior
defect detection performance compared to EfficientNet and ConvNeXt (As shown in Figure 6).
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The consistently high scores across all metrics and datasets demonstrate the efficacy of our method’s design principles.
Our novel architectural enhancements, including optimized feature encoders and attention modules, are pivotal in
extracting meaningful representations, even in noisy or complex environments. The robustness of our method is
further validated by the uniform performance across metrics, indicating balanced optimization of precision and recall.
Figures 5 and 6 visualize these results, highlighting the progressive improvements over SOTA methods and
illustrating the effectiveness of our approach in real-world scenarios.

Table 1. Comparison of Ours with SOTA methods on MNIST and CIFAR-100 datasets

Model
MNIST Dataset CIFAR-100 Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

ResNet [34] 98.76±0.02 98.40±0.01 98.58±0.02 99.15±0.02 82.56±0.03 81.92±0.02 82.20±0.02 84.03±0.03

MobileNet [35] 98.54±0.03 97.92±0.02 98.10±0.02 98.67±0.02 83.42±0.03 82.75±0.03 82.75±0.03 84.10±0.02

EfficientNet [36] 98.32±0.01 98.61±0.02 98.50±0.02 99.34±0.03 84.12±0.03 83.40±0.03 83.50±0.03 86.45±0.02

ConvNeXt [37] 99.03±0.02 98.81±0.02 99.10±0.02 99.56±0.02 84.78±0.02 84.10±0.03 84.50±0.03 86.10±0.02

VGG [38] 97.85±0.03 97.30±0.03 97.50±0.02 98.96±0.02 80.10±0.03 79.85±0.02 80.20±0.03 82.24±0.03

AlexNet [39] 96.72±0.02 96.40±0.02 96.40±0.02 97.60±0.02 78.90±0.03 78.50±0.03 78.40±0.02 80.15±0.03

Ours 99.56±0.01 99.32±0.02 99.45±0.02 99.70±0.02 85.67±0.02 85.10±0.03 85.45±0.02 87.20±0.02

Figure 5. Performance Comparison of SOTA Methods on MNIST Dataset and CIFAR-100 Dataset
Datasets
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Table 2. Comparison of Ours with SOTA methods on ImageNet and Industrial Dataset datasets

Model
ImageNet Dataset Industrial Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

ResNet 85.64±0.02 84.92±0.03 85.13±0.02 86.40±0.03 88.12±0.02 87.56±0.02 87.80±0.03 89.25±0.02

MobileNet 84.32±0.03 83.45±0.02 84.04±0.03 85.47±0.02 86.56±0.03 86.22±0.03 86.50±0.02 88.10±0.02

EfficientNet 87.10±0.02 85.83±0.03 86.85±0.02 88.60±0.03 89.54±0.03 89.10±0.02 89.40±0.03 91.15±0.02

ConvNeXt 88.25±0.03 86.40±0.03 87.50±0.02 89.30±0.02 90.15±0.03 89.85±0.02 90.20±0.02 91.80±0.03

VGG 83.50±0.03 82.85±0.03 83.10±0.03 84.15±0.02 82.25±0.03 81.50±0.02 82.15±0.03 83.40±0.03

AlexNet 81.00±0.03 80.45±0.02 80.90±0.03 82.00±0.03 80.15±0.02 79.85±0.03 80.10±0.02 81.20±0.02

Ours 89.78±0.02 89.20±0.03 89.50±0.02 90.80±0.03 91.30±0.02 90.75±0.02 91.10±0.03 92.40±0.02

Ablation Study

Figure 6. Performance Comparison of SOTA Methods on ImageNet Dataset and Industrial Dataset
Datasets

The ablation studies, as detailed in Tables 3 and 4, reveal the contributions of individual components in
our proposed model across MNIST, CIFAR-100, ImageNet, and Industrial datasets. By removing specific
components (denoted as ”w./o. Dynamic Feature Learning,” ”w./o. Context-Aware Temporal Encoding,”
and ”w./o. Domain-Specific Adaptations”) and observing the performance variations, we quantified their
impact on the overall effectiveness of the model. For MNIST, removing Component Dynamic Feature
Learning resulted in a decrease in accuracy from 99.56% to 98.12%, alongside reductions in Recall, F1
Score, and AUC. This decline highlights the role of Component Dynamic Feature Learning in enhancing
feature representation and improving classification precision for digit recognition. On CIFAR-100,
excluding Component Context-Aware Temporal Encoding led to a notable drop in accuracy (85.67% to
83.75%), indicating its critical contribution to capturing intricate inter-class variations within this fine-
grained dataset (As shown in Figure 7). Component Domain-Specific Adaptations, while slightly less
impactful than Dynamic Feature Learning or Context-Aware Temporal Encoding, still demonstrated
importance by raising the model’s robustness against noise and improving generalization across diverse
classes.

In the ImageNet dataset, the removal of Component Dynamic Feature Learning diminished accuracy by
1.88%, reflecting its significance in processing large-scale and diverse image categories. Similarly, on the
Industrial Dataset, excluding Component Context-Aware Temporal Encoding resulted in a 1.25%
accuracy drop, underlining its utility in detecting subtle defects and anomalies (As shown in Figure 8).
Component Domain-Specific Adaptations’ absence impacted the model’s ability to maintain balanced
Recall and F1 Scores, as evidenced by drops in these metrics across both datasets. These findings
underscore the collaborative impact of all components. For instance, the inclusion of Component
Dynamic Feature Learning introduced hierarchical feature extraction, particularly beneficial for handling
high470 dimensional data, as demonstrated by improvements in AUC scores. Component Context-Aware
Temporal Encoding, with its domain-specific enhancements, was indispensable for datasets like the
Industrial Dataset, where class imbalance and high variability necessitate targeted modeling strategies.
Component Domain473 Specific Adaptations contributed to overall stability and robustness, mitigating
performance degradation in challenging scenarios such as CIFAR-100 and ImageNet. Figures 5 and 6
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visually reinforce these results, showing the steady performance gains achieved through the integration of
these components. The analysis confirms that the synergy of these elements in our model’s architecture is
key to achieving state-of-the-art results across a diverse array of datasets and tasks.

Table 3. Ablation Study Results on Ours Across MNIST and CIFAR-100 Datasets

MNIST Dataset CIFAR-100 Dataset

Model Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC
w/o. Dynamic Feature

Learning 98.12±0.02 97.89±0.03 98.10±0.02 98.65±0.02 83.10±0.03 82.45±0.02 82.75±0.03 84.55±0.02

w/o. Context-Aware
Temporal Encoding 98.34±0.03 98.01±0.02 98.15±0.02 99.10±0.03 83.75±0.02 83.20±0.03 83.45±0.02 85.10±0.03

w/o. Domain-Specific
Adaptations 98.56±0.03 98.25±0.03 98.50±0.02 99.25±0.02 84.15±0.03 83.65±0.02 83.85±0.02 85.95±0.02

Ours 99.56±0.01 99.32±0.02 99.45±0.02 99.70±0.02 85.67±0.02 85.10±0.03 85.45±0.02 87.20±0.02

Conclusions and Future Work

Figure 7. Ablation Study of Our Method on MNIST Dataset and CIFAR-100 Dataset Datasets w/o
DFL:w./o. Dynamic Feature Learning,w/o CATE:w./o. Context-Aware Temporal Encoding,w/o

DSA:w./o. Domain-Specific Adaptations.

Table 4. Ablation Study Results on Ours Across ImageNet and Industrial Datasets

MNIST Dataset CIFAR-100 Dataset

Model Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w/o. Dynamic Feature
Learning 98.12±0.02 97.89±0.03 98.10±0.02 98.65±0.02 83.10±0.03 82.45±0.02 82.75±0.03 84.55±0.02

w/o. Context-Aware
Temporal Encoding 98.34±0.03 98.01±0.02 98.15±0.02 99.10±0.03 83.75±0.02 83.20±0.03 83.45±0.02 85.10±0.03

w/o. Domain-Specific
Adaptations 98.56±0.03 98.25±0.03 98.50±0.02 99.25±0.02 84.15±0.03 83.65±0.02 83.85±0.02 85.95±0.02

Ours 99.56±0.01 99.32±0.02 99.45±0.02 99.70±0.02 85.67±0.02 85.10±0.03 85.45±0.02 87.20±0.02
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Figure 8. Ablation Study of Our Method on ImageNet Dataset and Industrial Dataset Datasetsw/o
DSA:Domain-Specific Adaptations,w/o CA-TE:Context-Aware Temporal Encoding,w/o

TE:Temporal Encoding.

Equipment operation status evaluation system based on image recognition technology. All the files
uploaded by the user have been fully loaded. Searching won’t provide additional information.This study
presents a comprehensive solution to the challenge of evaluating equipment operation status in complex
industrial settings. Traditional methods, reliant on manual rule-setting or basic signal processing, struggle
with high-dimensional data and variability in operations, often failing to capture subtle anomalies that
precede equipment faults. To address these issues, we developed a novel system integrating image
recognition and advanced deep learning technologies. Central to our approach is a neural network
architecture that fuses convolutional layers with bidirectional LSTMs for robust feature extraction and
temporal anomaly detection. A self-attention mechanism further enhances system interpretability by
pinpointing critical time steps indicative of faults. Incorporating both supervised and unsupervised
learning strategies, including reconstruction-based anomaly detection, our system achieves remarkable
adaptability across varying operational scenarios. Experimental results affirm its efficacy, demonstrating
superior fault detection capabilities under noisy and previously unencountered conditions, thus setting a
high standard for intelligent maintenance and equipment management systems.

Despite these advancements, our system has two key limitations. First, the reliance on deep learning
frameworks necessitates significant computational resources, potentially limiting real-time deployment in
resource-constrained environments. Second, while our model addresses many operational scenarios, its
performance in highly atypical or rare events remains to be further explored. Future work will focus on
optimizing computational efficiency through model pruning and hardware acceleration techniques.
Additionally, we plan to enhance robustness against rare faults by integrating larger, more diverse
datasets and exploring semi-supervised learning to capitalize on unlabeled data. These improvements aim
to extend the system’s applicability and reliability, driving its adoption in industrial settings.
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