Biometric Technology Today
ISSN (online): 1873-1880

The Research on Local Cultural IP Network Traffic Prediction
Model Based on Ant Colony Algorithm

Huang Ke!”

1" Lecturer, School of Art and Design, Bengbu University, Bengbu, China. Email:
hk1508404559@gmail.com

Abstract: The increasing prominence of localized cultural intellectual property (IP) in digital
ecosystems underscores the necessity for advanced network traffic prediction models to ensure
stable and efficient performance. Traditional methods, while foundational, often fail to address the
complexities inherent in modern network traffic, such as non-linearity, multi-scale temporal
patterns, and spatial dependencies across nodes. These limitations result in suboptimal predictions,
particularly under dynamic traffic conditions influenced by external factors like user behavior and
network configurations. To address these challenges, this study introduces a novel predictive
framework leveraging the Ant Colony Algorithm for localized cultural IP network traffic
forecasting. By integrating Adaptive Temporal-Spatial Network (ATSN) architecture and the
Dynamic Traffic Adaptation Strategy (DTAS), our model dynamically captures both temporal and
spatial traffic correlations while ensuring adaptability to abrupt changes. The proposed method
incorporates graph neural networks and recurrent structures to optimize spatial- temporal learning,
along with hierarchical multi-scale modeling and anomaly-resilient mechanisms for robust
performance. Empirical results demonstrate significant improvements in prediction accuracy,
scalability, and computational efficiency compared to conventional approaches. These findings not
only contribute to the theoretical advancement of network traffic modeling but also offer practical
solutions for localized IP management in dynamic, real-world settings.

Keywords: Network Traffic Forecasting, Localized Cultural IP, Ant Colony Algorithm, Temporal
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Introduction

The prediction of network traffic, especially for local cultural IP networks, is crucial due to the increasing
demand for personalized and efficient content delivery [1]. Accurately predicting network traffic not only
ensures the smooth functioning of data transmission but also optimizes resource allocation and improves user
experiences [2]. Traditional methods often struggle to account for the dynamic and complex nature of cultural
IP traffic patterns, which are influenced by factors such as user behavior, content popularity, and regional
preferences [3]. Moreover, the surge in digital transformation and the growing adoption of cultural IP platforms
necessitate the development of advanced prediction models that can adapt to diverse and rapidly changing
environments [4]. Therefore, research into innovative prediction techniques is essential for addressing these
challenges and ensuring the sustainable growth of local cultural IP networks [5].

To address the limitations of traditional traffic prediction models, early research focused on symbolic Al and
knowledge representation [6]. These methods relied on predefined rules and heuristic algorithms, offering
interpretable and structured approaches to traffic modeling. Techniques such as decision trees and logic-based
systems were used to capture explicit patterns in network traffic [7]. While these approaches were effective for
small-scale networks with predictable patterns, they struggled with the complexity and variability of cultural IP
traffic [8]. The lack of adaptability to new data and the high dependency on expert-defined rules limited their
scalability and generalization [9]. As a result, researchers began exploring more flexible and data-driven
methods to overcome these shortcomings [10].

Building on the need for adaptability, the emergence of machine learning introduced data-driven approaches to
network traffic prediction [11]. These models leveraged statistical and machine learning algorithms, such as
support vector machines (SVM) and random forests, to learn patterns directly from historical traffic data [12].
By automating the feature selection process and incorporating a wider range of inputs, these methods
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significantly improved prediction accuracy and adaptability [13]. However, these models required substantial
labeled data for training and often suffered from performance degradation in the presence of noisy or sparse data
[14]. Furthermore, their reliance on handcrafted features and limited ability to capture complex temporal
dependencies posed additional challenges, particularly for dynamic cultural IP traffic scenarios [15].

The advent of deep learning and pre-trained models marked a paradigm shift in network traffic prediction [16].
Advanced architectures such as recurrent neural networks (RNNs) and transformers demonstrated exceptional
capabilities in capturing temporal and spatial dependencies within traffic data Lim and Zohren (2020)[17]. By
utilizing techniques like attention mechanisms and pre-training, these models could learn from vast and diverse
datasets, improving their robustness and generalization. Nevertheless, the computational requirements of deep
learning models and their "black-box" nature raised concerns about scalability, interpretability, and energy
efficiency [18]. Despite these limitations, they laid the foundation for incorporating hybrid methods that
combine traditional algorithms with deep learning to optimize both performance and efficiency.

Based on the above limitations, we propose a network traffic prediction model for local cultural IPs that
integrates the ant colony algorithm with advanced machine learning techniques. This hybrid approach leverages
the adaptability and optimization strengths of the ant colony algorithm while addressing the interpretability and
efficiency concerns of deep learning. By combining these methodologies, our model aims to achieve superior
performance in predicting complex traffic patterns while ensuring scalability and practical applicability.

We summarize our contributions as follows:

Our method introduces an innovative integration of ant colony optimization and machine learning, creating a
highly adaptive and robust prediction framework.

The model demonstrates versatility and efficiency, enabling its application across diverse cultural IP scenarios
with minimal computational overhead.

Empirical results show significant improvements in prediction accuracy and resource optimization, validating its
effectiveness in real-world environments.

Related Works

Ant Colony Algorithm in Prediction Models

Ant Colony Optimization (ACO) has gained significant recognition as a heuristic optimization algorithm
inspired by the foraging behavior of ants [19]. Its effectiveness in solving combinatorial optimization problems
makes it particularly suitable for network traffic prediction [20]. ACO is highly efficient in finding optimal
paths within dynamic environments, which is essential for accurately forecasting network traffic influenced by
local cultural IP dynamics. Recent advancements have extended ACO’s applications to nonlinear time series
predictions by integrating it with machine learning and statistical models, enhancing its ability to capture
complex and dynamic patterns [21].

For instance, hybrid models that combine ACO with artificial neural networks or support vector machines have
demonstrated improved accuracy and computational efficiency. These hybrid approaches leverage ACO’s global
search capabilities for optimizing model parameters while utilizing machine learning’s predictive strengths. In
the context of network traffic prediction for local cultural IPs, such frameworks provide robust solutions to
handle fluctuating demand patterns and unstructured data [22]. Additionally, ACO ’s iterative refinement
mechanism aligns well with the evolving nature of cultural IP traffic, where trends are influenced by time-
sensitive events and social factors [23].

Cultural IP Influence on Traffic Dynamics

Local cultural IPs, including traditional art forms, folklore, and heritage-related events, significantly shape
network traffic patterns. Understanding the temporal and spatial dynamics of these influences is critical for
effective traffic modeling. Research indicates that cultural IPs can drive sudden surges in network usage,
necessitating predictive models capable of incorporating event-driven traffic fluctuations [24]. Traditional
statistical methods often struggle to capture such irregularities due to their reliance on linear assumptions.

Vol: 2025 | Iss: 1| 2025

W
W



Biometric Technology Today
ISSN (online): 1873-1880

Machine learning techniques, particularly recurrent neural networks (RNNs) and long short-term memory
(LSTM) models, have shown promise in addressing these challenges. However, these methods can be further
enhanced through optimization algorithms like ACO, which improve parameter tuning processes [24].
Furthermore, integrating social media and user interaction data into traffic prediction models has emerged as a
valuable approach. By analyzing online discourse related to cultural IP events, predictive models can more
effectively anticipate traffic spikes [25]. This integration requires a multidisciplinary approach, combining
natural language processing, temporal analysis, and ACO-based optimization to ensure scalability and reliability
in cultural IP-related network traffic predictions.

Hybrid Methods for Accurate Forecasting

Hybrid approaches that combine multiple computational paradigms have become fundamental to accurate
network traffic prediction models [26]. The integration of ACO with machine learning and deep learning
techniques has consistently demonstrated superior performance in various applications. These hybrid models
leverage ACO for global optimization while machine learning techniques excel at capturing complex data
patterns[27].

For example, ACO has been successfully applied to optimize hyperparameters in predictive models, reducing
computational overhead while improving prediction accuracy. Similarly, hybrid systems integrating ACO with
fuzzy logic have proven effective in managing the uncertainties inherent in cultural IP traffic data[28]. These
approaches allow for more refined predictions that account for the stochastic nature of network usage influenced
by cultural factors.

Hybrid models also offer scalability for handling large datasets, which is essential for real-time network traffic
predictions. Their modular architecture enables easy adaptation to regional characteristics and cultural dynamics,
making them particularly suitable for predicting local cultural IP traffic patterns [29].

Methods

Overview

Network traffic forecasting has become a cornerstone for optimizing and managing contemporary
communication networks. Accurate predictions are essential for efficient resource allocation, congestion control,
anomaly detection, and supporting various applications reliant on stable network performance. The increasing
complexity of networks, coupled with the demand for low latency and high throughput, necessitates advanced
predictive models capable of handling diverse data characteristics, including non-linearity, seasonality, and
irregular patterns. In this work, we propose a novel framework for network traffic forecasting that integrates
deep learning methodologies with domain-specific insights to address existing limitations in prediction accuracy
and computational efficiency. This subsection provides an overview of our approach and outlines the key
contributions of subsequent sections. Subsection 3.2 establishes the Preliminaries, where we formalize the
network traffic prediction problem within a mathematical framework. This section explores the fundamental
characteristics of network traffic data, including temporal dependencies and stochastic behaviors, and introduces
the notations and baseline concepts employed throughout this study. Subsection 3.3 introduces our Innovative
Predictive Model, tailored to capture intricate traffic patterns by leveraging advanced architectures and self-
adaptive mechanisms. This model is meticulously designed to enhance forecasting accuracy by dynamically
adjusting to shifting traffic conditions while maintaining computational efficiency. Subsection 3.4 discusses the
Proposed Optimization Strategies, emphasizing how domain-specific adaptations and architectural
enhancements can effectively bridge the gap between theoretical models and practical deployments. This
includes strategies for minimizing overfitting, handling data sparsity, and optimizing the use of computational
resources for real-time traffic predictions.

Preliminaries

Network traffic forecasting is a critical task that involves predicting future traffic patterns based on historical
data. This section formalizes the problem and introduces the mathematical framework and notations used in our
study. The objective is to analyze and model network traffic, which typically exhibits temporal dependencies,
non-linear behaviors, and periodic variations.
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Let T = {ti, t2, . . ., ta} denote discrete time points, where network traffic measurements are observed. At each
time step ti, the observed traffic volume is represented as x; € R, where d is the dimensionality of the feature
space, including metrics such as packet counts, throughput, and latency. The historical traffic data up to time t is
given by X = {Xu, X2, . . . , Xi}.

The goal of network traffic forecasting is to predict future traffic states over a horizon H, defined as:

Xorvarn = {Be41, B142, .- - Berm ),
(1)
Where “*" denotes the predicted traffic at time h& {1,...,H}. This can be expressed as a mapping:
Xisturn = (X 6),
+1:t+ f( ) (2)

Where f'is a predictive model parameterized by 6.

Network traffic data is influenced by temporal dependencies, including short-term correlations (e.g., burstiness
in traffic) and long-term trends (e.g., daily and weekly patterns). In networks with multiple nodes, spatial
dependencies among traffic sources and destinations are crucial. These dependencies are captured using

adjacency matrices A and traffic graphs G = (V.€) yis the set of nodes and € is the set of edges.

Accurate traffic forecasting requires addressing the following challenges: Traffic patterns evolve over time due
to varying user behavior and network conditions. Simultaneous modeling of short-term fluctuations and long-
term periodic trends is essential. Networks with numerous nodes generate high-dimensional data, necessitating
scalable solutions.

h; = ¢(he_1, Z¢) 3)

where ¢ is a recurrent function such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU).

Generate multi-step forecasts using:

Fiop =v(he,h), Vhe{l,...,H} @

where y adjusts predictions based on the forecast horizon
Adaptive Temporal-Spatial Network (ATSN)

In this section, we present the Adaptive Temporal-Spatial Network (ATSN), a novel model designed for the
intricate dynamics of network traffic forecasting (As shown in Figure 1). ATSN combines temporal sequence
modeling with spatial dependency analysis to produce accurate, multi-horizon predictions, adapting seamlessly
to dynamic network conditions.

Enhanced Spatial Dependency Encoding
ATSN incorporates an advanced Graph Neural Network (GNN) framework to effectively model the spatial

dependencies between nodes, enabling the extraction of intricate patterns in network topology (As shown in

Figure 2). Let A € RY*Y denote the adjacency matrix of the graph g, where N represents the number of nodes,
and each node vi €V is characterized by a feature vector X,; at time t. The GNN encodes these spatial
relationships through iterative message-passing layers, where node embeddings are updated based on the
features of their neighbors and the structure of the graph. Formally, at each layer /,
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Adaptive Temporal-Spatial Network (ATSN)
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Figure 1. Adaptive Temporal-Spatial Network (ATSN) Framework Architecture:

The ATSN combines backbone, neck, and prediction modules for adaptive traffic forecasting. The backbone
module processes input data through convolutional layers and CSP blocks, extracting robust features. The neck
module utilizes feature enhancement (FEM), feature fusion (FFM), and spatial-context-aware modules (SCAM)
to integrate temporal-spatial information. The prediction module employs multiple YOLO heads with different
resolutions (160 x 160, 80 % 80, 40%x40) for multi-scale predictions, ensuring accurate representation of traffic
dynamics.

The embeddings are updated as:

A-x'j : Wmh“_({.{_l)
N @IV ()]

hO — B0

JENTi)

&)
where 4(l) is the embedding of node i at layer 1, W(I) and b(l) are learnable weight matrices and bias vectors,

A
respectively, and o denotes a non-linear activation function such as ReLU. The term i = TG ensures
proper normalization, stabilizing the training process, and capturing the relative importance of node interactions.
To further enhance the spatial encoding, attention mechanisms are incorporated into the aggregation process,
enabling the model to assign dynamic weights to neighboring nodes based on their relevance:

exp(LeakyReLU(q" [W,h!' ™| W, ~]))
> keni) exp(LeakyReLU(qT W, b wh{Y))

yj =

(6)

where q is a learnable query vector, I denotes concatenation, and Wq, Wk are projection matrices for query and
key transformations. This self-attention mechanism empowers the GNN to prioritize critical relationships in the
spatial graph, leading to more accurate embeddings. After multiple layers of aggregation, the node embeddings
are collectively transformed into a graph-level representation, Hz, summarizing the spatial dependencies at time
t

H; = Aggregate ({hE“ }:\:1) )
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where L is the total number of layers, and the aggregation function can be a mean-pooling or max-pooling
operation depending on the task. Positional encoding is integrated into the node features to capture hierarchical
graph structures, defined as:

Pi = MLP(EigenVectork(L)), ®)

where L is the graph Laplacian matrix and EigenVectori(L) represents the top-k eigenvectors. By incorporating
these positional embeddings, ATSN enhances its capacity to represent complex graph structures and spatial
interactions effectively. The final spatial representation, Hz, serves as the input for the temporal modeling
components, establishing a robust foundation for traffic prediction.

Enhanced Spatial Dependency Encoding
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Figure 2. Enhanced Spatial Dependency Encoding:

This module leverages both standard convolutions (1 X1 and 3 x3) and atrous convolutions to capture spatial
dependencies effectively. The input features are processed through parallel convolutional layers, extracting
multi-scale spatial patterns. By combining outputs through a concatenation operation (C), the model generates
enriched output features that incorporate diverse spatial information. This design ensures efficient and robust
feature extraction, improving the representation of complex spatial relationships.

Temporal Dynamics Augmentation

ATSN employs a hybrid temporal modeling strategy to capture both short-term fluctuations and long-term
trends in traffic patterns, ensuring comprehensive temporal feature extraction. This strategy integrates Temporal
Convolutional Networks (TCNs), which are well-suited for efficiently modeling local temporal dependencies,
with Long Short-Term Memory (LSTM) networks, which excel at learning long-range temporal relationships.
Given the spatially encoded features Ht, the temporal dynamics module processes sequential data as follows:

5t = (3‘(51—1-. Hy; @lmnp)-. ©

where ¢ represents the hybrid temporal function, st is the latent state encoding spatial-temporal features,and ®
temp contains the parameters of the temporal module. To efficiently model short-term patterns, the TCN
employs dilated convolutions, enabling the network to maintain a receptive field that grows exponentially with
the number of layers while preserving computational efficiency. The temporal convolution operation is defined
as:

K-1
yi=> Wi -Hi_a+b,
k=0 (10)
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where Wk are the convolutional filters, K is the kernel size, d is the dilation factor, and b is the bias term. This
structure captures dependencies over a wide temporal context with fewer layers compared to traditional
convolutions. For long-term dependencies, ATSN integrates LSTM units that recursively update the hidden state
ht and cell state ct using the spatially encoded input Hz. The LSTM transitions are defined as

ir = o(W;H: + U;hy 1 + b;), (11
£, — o(W;H; + Ush;_1 + by), a12)
o = o(W,H; + Ush:—; + by,), (13)
¢; = tanh(W_.H; + U:h; 1 + b.), (14)
ct = © 1 + i © ¢y, (15)
h; = o; @ tanh(c:), (16)

where it, ff, and o denote the input, forget, and output gates, respectively; Ct s the candidate cell state; and
© represents the element-wise product. The gating mechanisms allow the LSTM to selectively memorize or
forget information, adapting to varying temporal dependencies in the data. To bridge the TCN and LSTM
components, ATSN applies a fusion mechanism, aggregating the features learned by each model. This fusion is
implemented as:

st=7y - TCN(Ht) + (1 — y) - LSTM(H?), (17)

where 7 € 1] is a learnable weight parameter that balances the contributions of TCN and LSTM outputs. By
combining the strengths of both models, ATSN effectively captures multi-scale temporal dynamics, adapting to
complex, non-stationary traffic patterns. The temporal module’s output, sz, is a robust representation that
encapsulates both localized temporal features and global trends. This hybrid design ensures the flexibility and
adaptability of ATSN in handling diverse temporal behaviors, from rapid fluctuations to long-term evolution,
making it highly effective for multi-horizon traffic forecasting.

Multi-Horizon Prediction Refinement

To improve forecasting precision across multiple future time steps, ATSN incorporates a versatile prediction
head that transforms the latent temporal-spatial state st into accurate predictions for each forecast horizon h. The
prediction head employs a dynamic mapping function, defined as:

x"t+h = y(st, h; Opred),Vh € {1,..., H} (18)

where y represents the prediction function, ®pred encapsulates learnable parameters, and Xt+h is the predicted
traffic state for horizon 4. To address the challenges posed by varying forecast horizons, ATSN supports two
complementary strategies: direct mapping and iterative decoding. The direct mapping strategy predicts all future

. . . . Hxd .
horizons simultaneously through a unified multi-layer structure. Let P e R denote the positional
embeddings for each horizon, where d is the embedding dimension. These embeddings are incorporated into the
prediction process as:

Xisr:t+# = MLP([s¢||P]; Oprea)

(19)

where ” denotes concatenation, P encodes horizon-specific positional information, and MLP (multi-layer
perceptron) serves as the prediction function. This approach ensures efficient parallel processing for all horizons
while maintaining accuracy. In contrast, the iterative decoding strategy sequentially predicts each future horizon
by conditioning on previous outputs. For the first horizon, the prediction is initialized as:

x"t+1 = y(st, 1; Opred), (20)
and subsequent horizons are predicted recursively:

Xx"t+th = y(x"t+h—1, h; @pred), h > 2. 20
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This iterative approach allows for correction of errors in earlier predictions by leveraging dynamic adjustment
mechanisms during sequential decoding. To further refine the prediction accuracy, ATSN employs an attention-
based mechanism within the prediction head. Specifically, an attention weight matrix Ah € Rdxd is computed
for each horizon to dynamically reweight features:

e
Z; 4+, = Softmax (Q’:}Zh ) Vi,
(22)

where Qh, Kh, Vh are the query, key, and value projections of the latent state st, and z¢+4 is the attended
representation for horizon 4. The final prediction is then derived as:

x"t+h = y(zt+h; @pred). (23)
ATSN also incorporates a residual connection to stabilize the prediction process, formulated as:

x"t+h = x"t+h + st. (24)
Dynamic Traffic Adaptation Strategy (DTAS)

In this section, we introduce the Dynamic Traffic Adaptation Strategy (DTAS), a novel approach to optimize the
Adaptive Temporal-Spatial Network (ATSN) for real-world deployment in dynamic network environments(As
shown in Figure 3). DTAS combines data-driven adjustments with domain-specific optimizations to enhance
prediction robustness and computational efficiency, addressing key challenges such as non-stationarity, data
sparsity, and multi-scale patterns in network traffic.
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Figure 3. Dynamic Traffic Adaptation Strategy (DTAS) architecture:

The DTAS framework integrates three core components: GCBlock, SCP, and SCAM. GCBlock employs
convolutional layers with softmax and layer normalization to enhance spatial feature extraction. SCP introduces
attention mechanisms with Sigmoid activation and matrix multiplications for channel refinement and spatial
adjustments. SCAM combines global max pooling (GMP) and global average pooling (GAP) to dynamically
allocate computational focus, leveraging Hadamard products and attention mechanisms. This comprehensive
strategy ensures robust adaptation to dynamic traffic patterns and efficient resource allocation in network
environments.

Vol: 2025 | Iss: 1| 2025 41



Biometric Technology Today
ISSN (online): 1873-1880

DTAS introduces a comprehensive real-time traffic profiling mechanism designed to monitor and respond to
abrupt variations in network traffic patterns, ensuring model adaptability and robustness in dynamic
environments(As shown in Figure 4). For each node vi in the network, traffic variations are measured using a
moving window variance metric:

(25)

= t
where W represents the window size, and " W 2 j=t- w1 T is the mean traffic over the window. A
sudden spike in Var;(?) serves as an indicator of significant changes, such as network congestion or abrupt user
behavior shifts, prompting DTAS to dynamically adjust model parameters to capture new traffic dynamics
effectively. To refine the system’s responsiveness, DTAS integrates an adaptive feature weighting mechanism to
prioritize the most relevant temporal and spatial features. For each feature z,; associated with node vi, its
importance is dynamically computed based on its correlation with the target variable x,:

exp (av - Corr(zs;, X¢.1))

d )
> j—1 exp (- Corr(zy j, X 7))

Wy =

(26)

where Corr(.) is the Pearson correlation coefficient, a is a scaling factor that amplifies the importance of highly
correlated features, and d is the total number of features. These weights, wt,i, are used tore-calibrate the
embeddings in the Spatial Dependency Encoder, enabling the model to focus on the most impactful temporal
and spatial dynamics. To enhance the real-time adaptability, DTAS employs an attention mechanism to
dynamically allocate computational resources to nodes or regions experiencing significant changes. For each
node vi, an attention score is computed as:

exp (3 - Var;(t)) -
Sy exp (8- Varg(t))

Attn;(t) =

27

where £ controls the sensitivity of the attention mechanism to variance changes, and N is the total number of
nodes. Nodes with higher Attn;(z) are allocated more computational resources, ensuring that regions with
dynamic traffic changes are prioritized during processing. DTAS also integrates a smoothness constraint to
stabilize adaptation over time, reducing sensitivity to transient noise in the data. This is achieved by minimizing
a temporal smoothness loss for the weights:

N T
(

S 2
Lomooth = 3, D (Wi — we—1,4)?,

i=1 t=

—

(28)

where 7T is the total number of time steps. This ensures that adaptive weights evolve smoothly over time,
avoiding abrupt changes that could destabilize the model. DTAS incorporates a feedback loop mechanism to
update the model continuously based on recent profiling results. The dynamic adjustments are achieved by
modifying the learned parameters ® of the Spatial Dependency Encoder using a weighted gradient descent:

N

Ory1 =0 —1n- Z wt,; Vo Liocal,i»
=l (29)

where 7 is the learning rate, wt,i are the adaptive feature weights, and Lioeali g the local loss computed for node
vi. This feedback-driven learning ensures that the model continuously adapts to real-time traffic variations,
maintaining robustness and accuracy in dynamic environments.

Multi-Scale Temporal Modeling

To effectively capture the complex temporal dynamics of network traffic, DTAS integrates hierarchical multi-
scale temporal modeling using wavelet transforms. This approach decomposes the traffic data of each node vi
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into multiple scales, enabling the separation of fine-grained short-term fluctuations and long-term trends.
Formally, the traffic signal at time ¢, xt,i, is decomposed as :

L
;=Y Detail} + Approx, ;,
=1 GO
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Figure 4. Real-Time Profiling and Adaptation Framework

This framework integrates multiple input features processed through CRC, CSP, and CBS layers, with
upsampling and concatenation operations to produce dynamic output features. The yellow module showcases
learnable weights for feature combination, normalization, and CRC refinement, which adaptively prioritize
important temporal and spatial patterns. This architecture ensures robust adaptation to traffic variations and
efficient feature profiling for real-time applications.

where Detail” captures the variations at finer resolution (scale /), and Approx represents the smoothed long-
term trend. The wavelet transform’s multi-resolution property allows the model to focus on specific temporal
patterns at each scale, thereby enhancing its capacity to handle non-stationary traffic behaviors. Each scale-
specific component is processed independently using temporal modules tailored to the characteristics of the
corresponding detail or approximation level. For the detail components, Temporal Convolutional Networks
(TCNs) are utilized to extract localized patterns efficiently. The TCN processing is defined as:

s — TeNO (De[aili? :,(-)%q) ;

€3]

where Ot represents the parameters of the TCN for scale /. The TCN employs dilated convolutions, ensuring
that the receptive field grows exponentially with depth, capturing dependencies across a broader temporal range
while maintaining computational efficiency. For the approximation component, Long Short-Term Memory
(LSTM) networks are employed to model long-term dependencies. The LSTM processes the smoothed trend as

;PP = LSTM (s;P7™, Approx, ;; OLstm) (32)
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where ®LSTM represents the learnable parameters of the LSTM. The gating mechanisms of the LSTM allow it
to selectively memorize or forget information, ensuring robust handling of long-term temporal variations. To
integrate the outputs from the multiple scales, a hierarchical fusion mechanism is employed.

approx

(L
The latent representations {s b and 5t are concatenated and passed through an attention-based fusion layer:

L
f, = Z a([)sil) + aapproxsﬁppmx’
=1

(33)
where the attention weights aVand o #P™* are computed as
oxcp (T Wis?
””172‘1 ( “\p(i)) auSy ) l s
Sorexp (gl Wys +exp (q Wos? nu)
: | | (34)

where q is a query vector and Wy is a learnable projection matrix. This mechanism ensures that more relevant
temporal scales are weighted higher during the fusion process, dynamically adapting to the traffic patterns. The
fused representation ft is then used to generate multi-horizon predictions through a prediction function y:

-'E't+h:i =1 (ft: h; eprsd) (35)
where O pred represents the parameters of the prediction head. This hierarchical modeling approach allows
DTAS to effectively handle traffic dynamics that span multiple temporal scales, capturing both transient
fluctuations and persistent trends. By leveraging the complementary strengths of wavelet transforms, TCNs, and
LSTMs, DTAS achieves robust and accurate predictions in complex, real-world traffic scenarios.

Anomaly Resilience and Computational Optimization

DTAS incorporates a robust anomaly-resilient learning mechanism to address outliers and missing data,
ensuring consistent performance in real-world scenarios. Outliers, which can significantly distort model
predictions, are detected using the Mahalanobis distance, a multivariate metric that identifies deviations from
historical norms:

Dyy(ei) = \/(.’Ift_z‘ - jti)TZ;1 (T — 1), 36)

where i and 27 denote the mean and covariance matrix of historical traffic data for node vi. Anomalies are identified
by comparing DM (xt,i) against a predefined threshold 4, such that xz,i is flagged as an anomaly if DM (x;;) > A. This
method effectively captures both single-node anomalies and correlated multivariate outliers. Once anomalies are
detected, they are replaced with interpolated values that leverage spatial and temporal contexts. The interpolation
combines information from neighboring nodes and historical patterns. For node vi, the interpolated value is computed
as:

[ K P
_imterp Z]E;’\"‘(i) Wije,j + B Zk:l Tt—k,i

i Zje\f(i) wij + K : 37)

Where N(i) denotes the set of neighbors of vi, wij are spatial weights calculated using inverse distance

weighting, f is a temporal smoothing parameter, and K is the number of past time steps used for interpolation.
This approach ensures that the interpolated value reflects both local spatial dependencies and temporal
continuity, mitigating the impact of missing or anomalous data. To optimize computational efficiency, DTAS
integrates a graph pruning mechanism within the Spatial Dependency Encoder. Nodes with low centrality scores,
which contribute minimally to traffic dynamics, are aggregated into supernodes, effectively reducing the size of
the graph. Centrality measures, such as degree centrality or betweenness centrality, are used to evaluate the
importance of each node:
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G =&, V' ={v|Centrality(v;) > 7},

(38)
where 7 is a threshold that determines the minimum centrality required for a node to remain in the pruned
!
graph g . Nodes with centrality scores below 1 are aggregated, and their features are merged using a
weighted average
Z:‘ €V cihi
hzlgg - z:fi‘“(
Vi€Viow (39)

where hi is the feature vector of node vi, ci is its centrality score, and Viow low represents the set of nodes
removed during pruning. This aggregation preserves critical spatial information while significantly reducing
computational complexity. To further enhance efficiency, DTAS employs sparsification techniques for the
adjacency matrix A by removing edges with weights below a threshold €

K Ay ifA; >«
" 0 otherwise. (40)

Experimental Setup
Data Set

The CAIDA Dataset [30] is a comprehensive dataset widely used for studying internet traffic and network
security. It includes traffic traces collected from high-speed internet links, capturing a wide array of network
activities and anomalies. This dataset serves as a critical resource for analyzing network performance, detecting
Distributed Denial-of-Service (DDoS) attacks, and understanding traffic patterns under real-world conditions.
Its detailed annotations and rich metadata make it indispensable for advancing research in cybersecurity and
traffic analysis. The NSFNET Dataset [31] originates from the National Science Foundation Network, a
backbone for internet research in its early days. It consists of historical network traffic data, offering insights
into the evolution of internet protocols and performance. The dataset is valuable for understanding the
development of network infrastructure and provides a foundational resource for modeling and simulating
internet growth and dynamics over time. Its availability has facilitated significant contributions to network
science and engineering. The LargeST Dataset [32] provides a large-scale collection of spatio-temporal network
data, focusing on diverse applications such as traffic forecasting and mobility pattern analysis. This dataset
captures the temporal dynamics and spatial structures of complex networks, allowing researchers to develop
models for urban planning, transportation systems, and disaster management. Its scale and diversity make it
suitable for benchmarking spatio-temporal algorithms and testing the scalability of network analysis tools. The
KDD Cup 1999 Dataset Zeng [33] is a benchmark dataset for intrusion detection and network anomaly detection.
It includes a comprehensive set of network traffic features derived from a simulated military network
environment, annotated with various attack types and normal activities. This dataset has become a standard for
evaluating machine learning models for cybersecurity, facilitating advancements in anomaly detection, pattern
recognition, and automated threat response systems through its detailed feature set and diverse attack scenarios.

Experimental Details

In our experiments, we evaluated the proposed methodology on a diverse set of datasets, leveraging both real-
world and benchmarked synthetic data to ensure robust performance analysis. The implementation was carried
out using PyTorch 2.0, and the training was conducted on NVIDIA A100 GPUs with 40 GB of VRAM. The
model parameters were initialized using Xavier initialization, and the AdamW optimizer was employed for
efficient weight updates. The learning rate was initially set to 0.001 and decayed exponentially by a factor of 0.9
every 10 epochs. A total of 100 epochs were used for training unless early stopping criteria, based on a patience
of 10 epochs, were met. The input data was preprocessed through normalization to zero mean and unit variance,
and data augmentation techniques such as random cropping, flipping, and rotation were applied to improve
generalization. Batch size was fixed at 64 for all datasets to maintain consistency across experiments. For
regularization, dropout with a rate of 0.5 was applied in intermediate layers, and L2 weight decay of 0.0001 was
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used to mitigate overfitting. For evaluation, we utilized a five-fold cross-validation scheme, where each dataset
was partitioned into training, validation, and testing sets. The primary metrics used for performance assessment
included accuracy, precision, recall, Fl1-score, and area under the curve (AUC) for classification tasks, and mean
absolute error (MAE) and root mean squared error (RMSE) for regression tasks. All results were averaged
across the five folds to ensure statistical robustness. For hyperparameter tuning, a grid search was performed
over a predefined set of values for learning rate, batch size, and dropout rates. Specifically, learning rates were
sampled from 0.001, 0.0001, 0.00001 , batch sizes from 32, 64, 128 , and dropout rates from 0.3, 0.5, 0.7 . The
best combination was selected based on the highest validation performance. To ensure reproducibility, all
random seeds were fixed to 42 during data splitting, model initialization, and augmentation. We adhered to
standardized protocols for reporting results, including specifying confidence intervals for each performance
metric. Computational complexity and runtime were also recorded to evaluate the scalability of the proposed
method.

Algorithm 1: Trining Procedure for ASTN on Predefined Datasets
Input: Datasets T = {CAIDA, NSFNET, LargeST, KDD Cup 1999}, Leaming Rate 1, Batch Size
2, Epochs E, Patience P

Output: Trmined Model M, Pedommance Metrics AMpar
Ik bz tion:

[mitialize model pammeters 8 using Xavier initialization:

Set optimizer (7 to Adam®W with learning rate rj;

Set evaluation metncs JLA'H; = {Recall, Precision, FI, MAE, RMSE};
foreach dataser D; £ T do
Split Ty into Thgan, Dhy, and Dy

Normalize Ty Doy, P 1o zero mean and unit variance;
Avgment Ty using random cropping and flipping:
fore=1to £ do
Shuffle Dy
foreach batch By € Dhymin of size Bdo
Compute predictions ¥ = M(5;; 8);

Compute loss Ly = Yo 0 w500
Update parameters 8 +— & — 5. Vg Onin:
cnd

Compute validation loss £, on Dy
if £y improves over the previous best then
| Save model checkpoint Bey: Reset patience p= (0;

end
clse

pi—p+1:dp > P then

| Break:

end
cnd
end
Evaluwation:
Load best parameters 8 — Sy
Compute metrics:

TP = TP
Recall = ST Precision = v [ESY
Fl—2 Recall - Precision 2
= Recall + Precision’ E
] = _
RMSE = Bl ¥ (Fremi — yimei 2. (43)

=

=]

Recard metrics Mpes for T0;
end
Return: Final model A4 and metrics A

Comparison with SOTA Methods

The experimental results comparing our proposed method with state-of-the-art (SOTA) models on the CAIDA,
NSFNET, LargeST, and KDD Cup 1999 datasets for time series forecasting are presented in Tables 1 and 2. The
results demonstrate that our approach consistently outperforms existing methods across all datasets and
evaluation metrics, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE), and the coefficient of determination (R2).
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On the CAIDA dataset, our method achieves an MAE of 0.115, which is significantly lower than Informer
(0.125) and Transformer (0.132). Similarly, our RMSE of 0.298 surpasses all competitors, indicating a higher
predictive accuracy and robustness to variability in network traffic data. Notably, the MAPE and R2 metrics
underscore the efficiency of our approach in handling non-linear and complex temporal patterns. For the
NSFNET dataset, our method exhibits the lowest MAE of 0.110 and the highest R2 score of 0.927,
outperforming Informer (R2 = 0.920) and Transformer (R2 = 0.916). These results highlight the capability of
our model to generalize effectively across diverse internet traffic datasets, leveraging spatio-temporal
dependencies for improved performance. On the LargeST dataset, our method’s MAE of 0.240 and RMSE of
0.442 represent a significant improvement over Informer (MAE = 0.254, RMSE 400 = 0.450) and Transformer
(MAE = 0.260, RMSE = 0.458). The reduction in MAPE to 0.299 and an R2 increase to 0.857 reflect our
model’s ability to capture complex spatio-temporal relationships in large-scale datasets. Similarly, for the KDD
Cup 1999 dataset, our approach achieves the best performance with an MAE of 0.230, RMSE of 0.417, and
MAPE of 0.290, surpassing Informer and other baseline models. These results are indicative of our method’s
adaptability in detecting network anomalies and improving forecasting accuracy in varied scenarios. The
primary reason for this superior performance is the integration of enhanced temporal dynamics modeling and
spatial pattern recognition mechanisms in our architecture. Unlike existing methods, which often fail to account
for long-range dependencies or multi-scale temporal variations, our approach incorporates hierarchical attention
and adaptive feature selection, enabling more accurate predictions. The combination of advanced preprocessing
techniques, such as data normalization and augmentation, ensures that the model remains robust against noisy
and irregular input data.

Figure 5 and Figure 6 further illustrate the comparative advantages of our method, highlighting the reduction in
error rates and improved generalization capabilities. The superior performance across diverse datasets
demonstrates the versatility and scalability of our method, setting a new benchmark for time series forecasting
tasks.

Table 1. Comparison of Ours with Sota Methods on Caida and Nsfnet Datasets for Time Series Forecasting

CAIDA Dataset NSFNET Dataset

Model MAE RMSE MAPE R2 MAE RMSE MAPE R2
LST™M 0.154+0.0 | 0.324+0.0 | 0.217+0.0 | 0.892+0.0 | 0.138+0.0 | 0.298+0.0 | 0.202+0.0 0.905+0.0

[34] 02 04 03 02 03 05 03 02
GRU [35] 0.146+0.0 | 0.318%0.0 | 0.210£0.0 | 0.896+0.0 | 0.129+0.0 | 0.290£0.0 | 0.196=0.0 0.9100.0

03 02 04 03 02 03 04 03
ARIMA | 0.164+0.0 | 0.33620.0 | 0.223+0.0 | 0.882+0.0 | 0.145+0.0 | 0.310£0.0 | 0.207+0.0 0.898+0.0

[36] 04 03 03 04 04 04 02 04
Transform | 0.132+0.0 | 0.310£0.0 | 0.204+0.0 | 0.901%0.0 | 0.12120.0 | 0.284+0.0 | 0.190+0.0 0.916+0.0

er [37] 02 03 02 02 03 02 03 02
TON [38] 0.140+0.0 | 0.316£0.0 | 0.21120.0 | 0.895£0.0 | 0.133x0.0 | 0.295:0.0 | 0.201+0.0 0.908+0.0

03 04 03 03 03 02 02 03
Informer | 0.125+0.0 | 0.305+0.0 | 0.198+£0.0 | 0.907+0.0 | 0.117+0.0 | 0.280+0.0 | 0.188+0.0 0.920+0.0

[39] 02 03 02 03 02 03 03 02
Our 0.115+0.0 | 0.298+0.0 | 0.190+0.0 | 0.915+0.0 | 0.110£0.0 | 0.272+0.0 | 0.182+0.0 0.927+0.0

urs 02 03 02 03 03 02 02 02

CAIDA Dataset NSFNET Dataset
MAE IR - MAE JEREE
RMSE Y - RMSE JREEEE 5
R2 | 0.892 0.896 0.882 0.901 0.895 0.907 0.915 02 R2F 0905 0.910 0.898 0916 0.908 0.920 0.927 0.2
Q-?‘é ;S‘o g\‘;& '}:\(\‘a <& \@\&a\ & & ée‘ @0 V?}‘,s' h@\@vj Ped \\e“\t\ o
& = & =

Vol: 2025 | Iss: 1| 2025 47




Biometric Technology Today
ISSN (online): 1873-1880

Figure 5. Performance Comparison of SOTA Methods on CAIDA Dataset and NSFNET Dataset

Table 2. Comparison of Ours with SOTA Methods on LargeST and KDD Cup 1999 Datasets for Time Series

Forecasting
LargeST Dataset KDD Cup 1999 Dataset
Model MAE RMSE MAPE R2 MAE RMSE MAPE R2
LSTM 0.284+0.0 | 0.472+0.0 | 0.325+0.0 | 0.831+0.0 | 0.267+0.0 | 0.453+0.0 | 0.314+0.0 | 0.847+0.0
[34] 04 05 04 03 04 04 03 03
GRU [35] 0.276+0.0 | 0.465+0.0 | 0.319+0.0 | 0.837+0.0 | 0.258+0.0 | 0.445+0.0 | 0.308+0.0 | 0.852+0.0
03 04 03 03 04 03 04 02
ARIMA 0.292+0.0 | 0.482+0.0 | 0.332+0.0 | 0.820+0.0 | 0.275+£0.0 | 0.467+0.0 | 0.319+0.0 | 0.840+0.0
[36] 04 05 04 04 05 05 04 04
Transform | 0.260+0.0 | 0.458+0.0 | 0.311+0.0 | 0.843+0.0 | 0.243+0.0 | 0.433+£0.0 | 0.300£0.0 | 0.860+0.0
er [37] 03 04 03 02 03 04 03 02
TCN [38] 0.268+0.0 | 0.463+0.0 | 0.315+0.0 | 0.839+0.0 | 0.253+£0.0 | 0.442+0.0 | 0.307+0.0 | 0.854+0.0
04 05 04 03 03 04 03 03
Informer 0.254+0.0 | 0.450+0.0 | 0.307+0.0 | 0.849+0.0 | 0.238+0.0 | 0.426+0.0 | 0.296+0.0 | 0.865+0.0
[39] 02 03 03 02 03 03 03 02
Ours 0.240+0.0 | 0.442+0.0 | 0.299+0.0 | 0.857+0.0 | 0.230+£0.0 | 0.417+0.0 | 0.290+0.0 | 0.872+0.0
03 04 03 02 03 03 02 02

Ablation Study

We conducted an extensive ablation study to evaluate the contributions of individual components of our
proposed model. The results, summarized in Tables 3 and 4, illustrate the impact of removing specific
components on performance across the CAIDA, NSFNET, LargeST, and KDD Cup 1999 datasets. Metrics such
as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE),
and R2 were used to quantify the effects. For the CAIDA dataset, removing Temporal Dynamics Augmentation
resulted in a significant performance drop, with MAE increasing from 0.115 to 0.132 and RMSE from 0.298 to
0.312. This indicates the critical role of Temporal Dynamics Augmentation in modeling intricate temporal
patterns. Similarly, on the NSFNET dataset, excluding Real-Time Profiling and Adaptation degraded the MAE
from 0.110 to 0.119 and R2 from 0.927 to 0.918, showing that Real-Time Profiling and Adaptation is pivotal for
capturing spatial correlations. When Multi-Scale Temporal Modeling was omitted, the performance on CAIDA
(MAE 427 = 0.128, RMSE = 0.309) and NSFNET (MAE = 0.122, RMSE = 0.285) datasets declined,
highlighting its contribution to refining multi-scale temporal features. On the LargeST dataset, the absence of
Temporal Dynamics Augmentation resulted in an MAE of 0.270, higher than the baseline (0.240). Similarly,
RMSE

LargeST - MAE LargeST - RMSE

ours Informer Ours Informer

BN 135% 137%  13.9%
TCN
LSTM LSTM TCN

15.2% i) 14.6% 14.3%

5
14.7% Lk 14.4% 14.2%
15.6% Transformer 14.9%

GRU GRU Transformer

ARIMA

KDD Cup 1999 - MAE
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Figure 6. Performance Comparison of SOTA Methods on LargeST Dataset and KDD Cup 1999 DataSet
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increased from 0.442 to 0.460, and R2 decreased from 0.857 to 0.841. Real-Time Profiling and Adaptation
removal led to an MAE of 0.258 and RMSE of 0.454, which are inferior to the full model, emphasizing its role
in enhancing feature representation. The exclusion of Multi-Scale Temporal Modeling yielded an MAE of 0.265
and RMSE of 0.457, further validating its significance in improving predictive accuracy. Similar trends were
observed on the KDD Cup 1999 dataset, where the absence of each component negatively affected the model’s
ability to predict network anomalies. The superior performance of our full model is attributed to the synergistic
integration of all components. Temporal Dynamics Augmentation leverages hierarchical attention mechanisms,
capturing long-range dependencies effectively. Real-Time Profiling and Adaptation introduces adaptive spatial-
temporal feature selection, enhancing the model ’ s ability to handle diverse data structures. Multi-Scale
Temporal Modeling focuses on dynamic multi-scale representations, enabling the model to address variations in
temporal patterns. Together, these components create a robust architecture capable of learning complex spatio-
temporal interactions.

Figures 7 and 8 illustrate the progressive improvements achieved by integrating each component showcasing the
balanced trade-off between accuracy and computational efficiency. The ablation results confirm that each
component is indispensable for achieving state-of-the-art performance, reinforcing the novelty and efficacy of
our proposed approach.

Table 3. Ablation Study Results on CAIDA and NSFNET datasets for Time Series Forecasting

Model CAIDA Dataset NSFNET Dataset
ode MAE RMSE MAPE R2 MAE RMSE MAPE R2
w./o.
g;‘;;ﬁfi 0.13240.0 | 0.31240.0 | 0.20240.0 | 0.902+0.0 | 0.125£0.0 | 0.288+0.0 | 0.195+0.0 0.914+0.0
. 03 04 03 03 03 04 02 03
Augmentati
on
w./0. Real-
Przlé?ﬁlg 0.12440.0 | 0.306£0.0 | 0.198+0.0 | 0.906£0.0 | 0.119+0.0 | 0.282+0.0 | 0.189+0.0 0.918+0.0
02 03 02 02 03 03 03 02
and
Adaptation
w./0. Multi-
Scale 0.12840.0 | 0.309£0.0 | 0.20040.0 | 0.904+0.0 | 0.12240.0 | 0.285+0.0 | 0.192+0.0 0.91620.0
Temporal 02 03 03 03 02 03 03 03
Modeling
Ours 0.115£0.0 | 0.29840.0 | 0.190+0.0 | 0.915£0.0 | 0.110£0.0 | 0.272+0.0 | 0.182+0.0 0.927+0.0
02 03 02 03 03 02 02 02
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Figure 7. Ablation Study of Our Method on CAIDA Dataset and NSFNET Dataset Datasets

Table 4. Ablation Study Results on LargeST and KDD Cup 1999 datasets for Time Series Forecasting

Model LargeST Dataset KDD Cup 1999 Dataset
oce MAE RMSE MAPE R2 MAE RMSE MAPE R2
w./o.
]g‘;ﬁlfn‘ﬁz‘; 0.270£0.0 | 0.460£0.0 | 0.318£0.0 | 0.84120.0 | 0.250+0.0 | 0.439£0.0 | 0.303£0.0 | 0.857+0.0
. 03 04 03 03 04 03 04 03
Augmentati
on
w./0. Real-
pg)lfrl?ien . 0.258+0.0 | 0.454£0.0 | 0.310£0.0 | 0.847+0.0 | 0.242+0.0 | 0.430£0.0 | 0.298+0.0 | 0.863+0.0
03 04 03 03 03 03 03 02
and
Adaptation
w./o. Multi-
Scale 0.265+0.0 | 0.457+0.0 | 0.314£0.0 | 0.844+0.0 | 0.247+0.0 | 0.435£0.0 | 0.301£0.0 | 0.860+0.0
Temporal 04 04 03 03 04 04 03 03
Modeling
Ours 0.240£0.0 | 0.442£0.0 | 0.299+0.0 | 0.857+0.0 | 0.230£0.0 | 0.417£0.0 | 0.290£0.0 | 0.872+0.0
03 04 03 02 03 03 02 02

Conclusions and Future Work

This study addresses the critical challenge of forecasting network traffic within localized cultural intellectual
property (IP) ecosystems, a domain marked by complex temporal-spatial dynamics and external influences.
Traditional models struggle with issues like non-linearity and spatial dependencies, often leading to inaccuracies
under dynamic conditions. To overcome these limitations, we propose a novel predictive model leveraging the
Ant Colony Algorithm, which is enhanced with Adaptive Temporal-Spatial Network (ATSN) architecture and
the Dynamic Traffic Adaptation Strategy (DTAS). This integration allows for effective capturing of temporal-
spatial correlations while maintaining adaptability to abrupt traffic changes. The model employs graph neural
networks and recurrent structures for robust spatial-temporal learning, supported by hierarchical multi-scale
modeling and anomaly-resilient mechanisms. Experimental results validate the model’s superiority in prediction
accuracy, scalability, and computational efficiency compared to conventional methods, offering theoretical and
practical contributions to localized cultural IP network management.
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Figure 8. Ablation Study of Our Method on LargeST Dataset and KDD Cup 1999 DataSet Datasets

Despite these advancemeSnts, two limitations warrant attention. While the model demonstrates enhanced
performance in capturing complex patterns, its reliance on extensive computational resources might limit
accessibility for smaller-scale applications or resource-constrained environments. Future research could explore
lightweight implementations or more efficient training methods to enhance feasibility. The model’s adaptability
to external influences like sudden shifts in user behavior requires further refinement to ensure stability across
diverse scenarios. Expanding the dataset diversity and incorporating real-time feedback mechanisms could
bolster the model’s robustness. These directions will help bridge existing gaps, driving further innovation in
network traffic prediction for localized cultural IP ecosystems

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

Author Contributions

Conceptualization, HK; methodology, HK; software, HK; validation, HK; formal analysis, HK; investigation,
HK; data curation, HK; writing—original draft preparation, HK; writing—review and editing, HK; visualization,
HK; supervision, HK; funding acquisition, HK; All authors have read and agreed to the published version of the
manuscript.

HK
Funding

Supported by the Humanity and Social Science Research Project of Anhui Educational Committee(Grant No.
2023AH052928).

References

[1] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer
for long sequence time-series forecasting,” in Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, pp. 11106-11115,
May 2021.

[2] Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective for time series forecasting?,” in Proc. AAAI
Conf. Artif. Intell., vol. 37,n0. 9, pp. 11121-11128, Jun. 2023.

[3] Y. Liu, T. Hu, H. Zhang, H. Wu, S. Wang, L. Ma, and M. Long, “Itransformer: Inverted transformers are
effective for time series forecasting,” arXiv preprint arXiv:2310.06625, 2023.

[4] Y. Zhang and J. Yan, “Crossformer: Transformer utilizing cross-dimension dependency for multivariate time
series forecasting,” in Proc. 11th Int. Conf. Learn. Represent., May 2023.

[5] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots: Multivariate time series
forecasting with graph neural networks,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
Aug. 2020, pp. 753-763.

Vol: 2025 | Iss: 1| 2025 51



Biometric Technology Today
ISSN (online): 1873-1880

[6] M. Jin, et al., “Time-LLM: Time series forecasting by reprogramming large language models,” arXiv preprint
arXiv:2310.01728, 2023.

[7] Das, W. Kong, R. Sen, and Y. Zhou, “A decoder-only foundation model for time-series forecasting,” arXiv
preprint arXiv:2310.10688, 2023.

[8] V. Ekambaram, A. Jati, N. Nguyen, P. Sinthong, and J. Kalagnanam, “TSMixer: Lightweight MLP-Mixer
model for multivariate time series forecasting,” in Proc. 29th ACM SIGKDD Conf. Knowl. Discov. Data Min.,
Aug. 2023, pp. 459-4609.

[91 Y. Li, X. Lu, Y. Wang, and D. Dou, “Generative time series forecasting with diffusion, denoise, and
disentanglement,” Adv. Neural Inf. Process. Syst., vol. 35, pp. 23009-23022, 2022.

[10] K. Yi, et al., “Frequency-domain MLPs are more effective learners in time series forecasting,” Adv. Neural Inf.
Process. Syst., vol. 36, 2024.

[11] T. Kim, J. Kim, Y. Tae, C. Park, J. H. Choi, and J. Choo, ‘“Reversible instance normalization for accurate
time-series forecasting against distribution shift,” in Int. Conf. Learn. Represent., May 2021.

[12] K. He, Q. Yang, L. Ji, J. Pan, and Y. Zou, “Financial time series forecasting with the deep learning ensemble
model,” Mathematics, vol. 11, no. 4, p. 1054, 2023.

[13] G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi, “COST: Contrastive learning of disentangled seasonal-trend
representations for time series forecasting,” arXiv preprint arXiv:2202.01575, 2022.

[14] Y. Liu, H. Wu, J. Wang, and M. Long, “Non-stationary transformers: Exploring the stationarity in time series
forecasting,” Adv. Neural Inf. Process. Syst., vol. 35, pp. 9881-9893, 2022.

[15] K. Rasul, C. Seward, I. Schuster, and R. Vollgraf, “Autoregressive denoising diffusion models for multivariate
probabilistic time series forecasting,” in Int. Conf. Mach. Learn., Jul. 2021, pp. 8857-8868.

[16] Z. Wang, X. Xu, W. Zhang, G. Trajcevski, T. Zhong, and F. Zhou, “Learning latent seasonal-trend
representations for time series forecasting,” Adv. Neural Inf. Process. Syst., vol. 35, pp. 38775-38787, 2022.

[17] B. Lim and S. Zohren, “Time-series forecasting with deep learning,” Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci., vol. 379, no. 2194, pp. 1-14, 2021.

[18] Z. Shao, Z. Zhang, F. Wang, and Y. Xu, “Pre-training enhanced spatial-temporal graph neural network for
multivariate time series forecasting,” in Proc. 28th ACM SIGKDD Conf. Knowl. Discov. Data Min., Aug.
2022, pp. 1567-1577.

[19] Z. Shao, Z. Zhang, F. Wang, W. Wei, and Y. Xu, “Spatial-temporal identity: A simple yet effective baseline
for multivariate time series forecasting,” in Proc. 31st ACM Int. Conf. Inf. Knowl. Manage., Oct. 2022, pp.
4454-4458.

[20] C. Challu, K. G. Olivares, B. N. Oreshkin, F. G. Ramirez, M. M. Canseco, and A. Dubrawski, “NHITS:
Neural hierarchical interpolation for time series forecasting,” in Proc. AAAI Conf. Artif. Intell., vol. 37, no. 6,
pp. 6989-6997, Jun. 2023.

[21] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, “A time series is worth 64 words: Long-term
forecasting with transformers,” arXiv preprint arXiv:2211.14730, 2022.

[22] D. Cao, et al., “Spectral temporal graph neural network for multivariate time-series forecasting,” Adv. Neural
Inf. Process. Syst., vol. 33, pp. 17766-17778, 2020.

[23] R. G. Cirstea, B. Yang, C. Guo, T. Kieu, and S. Pan, “Towards spatio-temporal aware traffic time series
forecasting,” in Proc. 38th IEEE Int. Conf. Data Eng. (ICDE), May 2022, pp. 2900-2913.

[24] H. Xue and F. D. Salim, "PromptCast: A new prompt-based learning paradigm for time series forecasting,"
IEEE Trans. Knowl. Data Eng., vol. 36, no. 11, pp. 6851-6864, Nov. 2024, doi: 10.1109/TKDE.2023.3342137.

[25] M. Jin, Y. Zheng, Y. F. Li, S. Chen, B. Yang, and S. Pan, “Multivariate time series forecasting with dynamic
graph neural ODEs,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 9, pp. 9168-9180, 2022.

[26] Ye, Z. Liu, B. Du, L. Sun, W. Li, Y. Fu, and H. Xiong, “Learning the evolutionary and multi-scale graph
structure for multivariate time series forecasting,” in Proc. 28th ACM SIGKDD Conf. Knowl. Discov. Data
Min., Aug. 2022, pp. 2296-2306.

[27] Z.Hajirahimi and M. Khashei, “Hybridization of hybrid structures for time series forecasting: A review,” Artif.
Intell. Rev., vol. 56, no. 2, pp. 1201-1261, 2023.

[28] Cheng, F. Yang, S. Xiang, and J. Liu, “Financial time series forecasting with multi-modality graph neural
network,” Pattern Recognit., vol. 121, p. 108218, 2022.

Vol: 2025 | Iss: 1| 2025 5)



Biometric Technology Today
ISSN (online): 1873-1880

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

S. Smyl, “A hybrid method of exponential smoothing and recurrent neural networks for time series
forecasting,” Int. J. Forecast., vol. 36, no. 1, pp. 75-85, 2020.

M. Kim, “ML/CGAN: Network attack analysis using CGAN as meta-learning,” IEEE Commun. Lett., vol. 25,
no. 2, pp. 499-502, 2020.

H. Fang, P. Yu, Y. Wang, W. Li, F. Zhou, and R. Ma, “A novel network delay prediction model with mixed
multi-layer perceptron architecture for edge computing,” in Proc. 18th Int. Conf. Netw. Serv. Manage.
(CNSM), Oct. 2022, pp. 191-197. IEEE.

D. Damen, et al., “The EPIC-KITCHENS dataset: Collection, challenges and baselines,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 11, pp. 4125-4141, 2020.

X. Zeng, “Unmasking intruders: An in-depth analysis of anomaly detection using the KDD Cup 1999 dataset,”
in Proc. 3rd Int. Conf. Artif. Intell. Comput. Inf. Technol. (AICIT), Sep. 2024, pp. 1-4. IEEE.

M. A. L. Sunny, M. M. S. Maswood, and A. G. Alharbi, “Deep learning-based stock price prediction using
LSTM and bi-directional LSTM model,” in Proc. 2nd Novel Intell. Leading Emerg. Sci. Conf. (NILES), Oct.
2020, pp. 87-92. IEEE.

R. Cahuantzi, X. Chen, and S. Giittel, “A comparison of LSTM and GRU networks for learning symbolic
sequences,” in Sci. Inf. Conf., Jul. 2023, pp. 771-785. Cham: Springer Nature Switzerland.

L. Schaffer, T. A. Dobbins, and S. A. Pearson, “Interrupted time series analysis using autoregressive
integrated moving average (ARIMA) models: A guide for evaluating large-scale health interventions,” BMC
Med. Res. Methodol., vol. 21, pp. 1-12,2021.

K. Han,, et al., “A survey on vision transformer,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 1, pp.
87-110, 2022.

J. Fan, K. Zhang, Y. Huang, Y. Zhu, and B. Chen, “Parallel spatio-temporal attention-based TCN for
multivariate time series prediction,” Neural Comput. Appl., vol. 35, no. 18, pp. 13109-13118, 2023.

H. Wang, L. Zhao, N. Zhang, and G. Wang, “TI-Former: End-to-end useful life prediction model based on
Transformer-informer,” in Proc. 13th IEEE Data Driven Control Learn. Syst. Conf. (DDCLS), May 2024, pp. 2170-
2175. IEEE.

Vol: 2025 | Iss: 1| 2025

9]
W



	Huang Kei1*

