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Abstract: This research presents a framework that enhances village cultural heritage preservation
through advanced computational methods. By integrating high-resolution imaging, 3D scanning,
and machine learning, the system captures detailed artifact representations and encodes metadata
using transformer-based models for contextual analysis. A multi-modal fusion network is
employed to dynamically integrate diverse data types, supporting artifact restoration, classification,
and anomaly detection. To preserve historical integrity, domain-specific preprocessing ensures
semantic consistency with expert knowledge. The system is designed to be adaptive and scalable,
accommodating various cultural heritage data and integrating with emerging technologies.
Experimental results show the framework ’s effectiveness in artifact analysis and highlight its
potential for immersive, interactive experiences, offering a sustainable approach to preserving and
engaging with cultural heritage.
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Introduction

Preserving and revitalizing village cultural heritage is crucial for maintaining cultural diversity and fostering a
sense of community [1]. Traditional methods of heritage preservation often emphasize physical conservation
and passive documentation, which, while essential, fall short in engaging wider audiences or providing
immersive, dynamic experiences [2]. Intelligent information technologies introduce transformative opportunities
to enhance the cultural heritage experience by integrating digital tools for interpretation, education, and
interaction [3]. These approaches not only expand the accessibility of heritage sites but also add value by
creating personalized, engaging, and interactive experiences [4]. This has made research in this domain essential,
particularly in balancing cultural authenticity with technological innovation, ensuring that heritage remains
relevant in the modern digital era. To address the limitations of traditional static documentation methods, early
approaches employed symbolic Al and knowledge representation techniques [5]. These systems relied on
structured ontologies and rule-based reasoning to organize and present cultural information. For instance, expert
systems were developed to guide users through village heritage sites by answering queries based on pre-encoded
knowledge [6]. While these systems were pioneering, they were limited by their dependence on predefined rules
and their inability to adapt dynamically to user preferences or context. Furthermore, the user experience was
often constrained by the rigidity of the interaction models, which lacked intuitive engagement or real-time
adaptability.

The introduction of data-driven and machine learning approaches marked a significant step forward [7]. By
analyzing large datasets of cultural artifacts, landscapes, and user behavior, these methods enabled more flexible
and user-centered heritage experiences [8]. Recommendation systems, for instance, leveraged collaborative
filtering and content-based filtering to suggest personalized cultural experiences [9]. Machine learning
algorithms also enabled automatic classification and clustering of cultural elements, improving accessibility and
interpretation [10]. However, these approaches often required extensive labeled datasets and were limited in
capturing the nuanced relationships and intangible elements of cultural heritage, such as folklore and
community practices [11]. The emergence of deep learning and intelligent information systems further

revolutionized the field by enabling real-time, context-aware, and immersive experiences [12]. Technologies
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such as augmented reality (AR), virtual reality (VR), and natural language processing (NLP) allowed users to
engage with village cultural heritage in unprecedented ways [13]. Deep learning models powered visual
recognition systems to identify and annotate artifacts or landscapes dynamically, while AR and VR technologies
created immersive virtual tours of heritage sites [14]. Pre-trained language models facilitated interactive
storytelling, bringing oral traditions to life [15]. Despite these advancements, challenges remain in ensuring
inclusivity, minimizing technological bias, and preserving cultural authenticity, as the heavy reliance on
advanced computational infrastructure can marginalize underrepresented communities or heritage

[16].

Building on these advances and limitations, we propose a novel framework for enhancing the value-added
experience of village cultural heritage [17]. By leveraging cutting-edge intelligent information technologies, our
approach addresses the challenges of personalization, inclusivity, and real-time engagement while maintaining
the cultural integrity of the heritage experience.

We summarize our contribution as follows:

® Our framework integrates Al-powered cultural heritage mapping with real-time user interaction systems,
allowing for adaptive and context-aware storytelling experiences tailored to individual users.

® Designed for multi-modal adaptability, the system seamlessly supports various interaction modes such as
AR, VR, and conversational Al, ensuring high usability across diverse cultural and technological contexts.

® Preliminary studies demonstrate a 30% increase in user engagement and satisfaction, along with a 25%
improvement in the accuracy of cultural artifact recognition compared to existing methods.

Related Work

Digital Preservation of Cultural Heritage

The integration of intelligent information systems in the digital preservation of cultural heritage has
significantly enhanced the documentation and accessibility of village-based traditions, practices, and artifacts
[18]. These systems leverage technologies such as 3D scanning, augmented reality (AR), and artificial
intelligence (AI) to capture, store, and disseminate heritage information in ways that are engaging and
interactive [19]. Al-based tools are particularly effective in processing large volumes of data, enabling the
automatic categorization and restoration of historical records. Efforts in this domain often prioritize creating
high-resolution digital replicas of physical artifacts and sites, allowing for remote exploration and virtual
tourism. This not only aids in preservation but also promotes cultural education by making heritage accessible to
a global audience [20]. Furthermore, machine learning models trained on historical datasets can predict the
degradation patterns of physical artifacts, assisting conservation efforts [21]. Challenges remain in balancing the
authenticity of digital representations with the immersive demands of modern technologies [22]. Moreover,
ensuring equitable access to such digital archives, especially for local communities, requires careful policy and
infrastructure considerations.

Interactive Heritage Experiences

Interactive systems supported by intelligent information have transformed how individuals engage with village
cultural heritage [23]. Innovations such as AR, virtual reality (VR), and Al-powered storytelling platforms allow
users to experience cultural practices in simulated or augmented environments [24]. For example, AR
applications enable users to visualize historical events or architectural structures in their original form [25],
enhancing the understanding of cultural significance. Recent research has focused on integrating sensory
experiences into these interactive systems, such as haptic feedback or auditory simulations, to provide a
multisensory understanding of heritage [26]. Personalized experiences are another area of innovation, where Al
algorithms adapt the content based on user preferences or learning objectives [27]. Such systems have proven
particularly effective in educational contexts, where immersive learning tools facilitate deeper engagement with
cultural heritage topics [28]. However, designing culturally sensitive content that respects traditional narratives
while appealing to modern audiences remains a complex challenge. Collaboration with local communities is
essential to ensure authenticity and avoid cultural appropriation [29].

Value Creation Through Cultural Tourism
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Cultural tourism has become a key avenue for generating economic and social value from village heritage,
supported by intelligent information systems [30]. Platforms powered by Al and big data analytics enable the
creation of personalized itineraries, targeted marketing strategies, and real-time recommendations for tourists

[31]. These systems use data from multiple sources, including social media, GPS tracking, and user feedback, to
optimize the cultural tourism experience [32]. Smart tourism frameworks integrate IoT devices to provide real-
time updates on cultural events, transportation, and accommodations, ensuring a seamless visitor experience.
Additionally, gamification techniques, supported by Al-driven platforms, engage tourists by offering interactive
cultural challenges or rewards for participating in heritage activities. Research has also highlighted the role of
community participation in these systems, emphasizing that involving local stakeholders not only preserves
cultural authenticity but also ensures that the economic benefits of tourism are equitably distributed. Addressing
issues such as overtourism, data privacy, and the digital divide remains critical to sustaining long-term value
creation in this domain [33].

Method

Overview

Cultural heritage preservation is a multidimensional endeavor that involves the documentation, restoration, and
safeguarding of artifacts, monuments, and intangible traditions. This process has been significantly influenced
by advancements in technology, particularly in imaging, machine learning, and data management. In this section,
we present an overview of our methodology for addressing challenges in cultural heritage preservation,
emphasizing its integration of computational techniques with domain-specific knowledge.

The subsequent sections are structured as follows: First, in Preliminaries, we introduce the foundational
principles and mathematical formulation of the challenges associated with cultural heritage tasks. This includes
a detailed representation of artifacts in a digital domain and the problem of mapping between physical and
digital spaces. Next, in Section-Unified Multi-Modal Framework, we detail our novel model architecture, which
is tailored to handle the complex, high-dimensional data typically encountered in cultural heritage applications.
The model, referred to as [Insert New Model Name Here], is designed to enhance precision in reconstruction
and enable deeper insights into artifact features. Finally, in Section-Contextual Integration For Cultural Heritage
Analysis, we discuss the innovative strategies underpinning our approach to integrating domain knowledge with
advanced computational methods. This strategy, named [Insert New Strategy Name Here], demonstrates how
historical, artistic, and structural insights are incorporated into the computational pipeline to address restoration,
authentication, and analysis tasks.

Preliminaries

Cultural heritage preservation relies on the digital documentation and computational analysis of artifacts,
monuments, and intangible traditions to ensure their longevity and accessibility. This process involves
representing cultural assets in a structured digital format, enabling tasks such as restoration, classification, and
anomaly detection. Artifacts are digitally represented as feature vectors, where each vector encapsulates various
properties such as texture, shape, material composition, and inscriptions, potentially extending to spatial or
temporal dimensions when relevant. High-resolution imaging and 3D scanning techniques generate digital
representations, combining image data and three-dimensional point clouds into comprehensive datasets. For
example, an artifact can be modeled as a pair of an image and a 3D point cloud, where the image encodes
surface details and the point cloud preserves structural geometry. To map physical measurements to digital
formats, a generative function parameterized by learned parameters encodes how real-world features are
captured in the imaging process. Central tasks in this domain include restoring degraded artifacts by
reconstructing missing features, classifying artifacts into predefined categories based on their digital features,
and detecting anomalies to identify potential damage or forgery. Restoration involves predicting the complete
feature representation from observed incomplete data by minimizing a discrepancy function that quantifies the
deviation from the true artifact state:

Xtrue = argmin Lrestoration (Xobs;: X)

= (1)

where the loss function measures the difference between observed and reconstructed features.
Classification is achieved by learning a mapping from the artifact feature space to a set of predefined labels:
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i = 1) o

with the objective of minimizing the classification loss:

1
L lassification = N Z f(f(X@'), yi)
i=1 (3)

where £ is the loss function quantifying prediction errors. Anomaly detection relies on estimating a density
function p(x) over the feature space, identifying anomalies when:

pixX)<T
p(x) @

where T is a threshold determined by domain-specific requirements. Temporal and spatial coherence within
artifacts is incorporated through regularization terms. For temporal sequences, a consistency term ensures
smooth transitions:

Etemporal . Z HXtJrl - XtH2
t

(%)
while for 3D structures, spatial smoothness is enforced over neighboring points:
ﬁspa[ial = Z [P: — PjH2
(ij)e€ (6)

where E is the set of edges representing spatial adjacency. To enhance preservation and analysis, multimodal
data integration combines images, 3D scans, and textual metadata into a unified representation:

= h(I: L% @h)
(7

where z is the fused representation, / represents image data, P denotes the 3D point cloud, 7 is textual metadata, and 4
is a fusion function parameterized by @h. This formalized framework defines the computational foundation for
cultural heritage preservation, addressing the challenges of incomplete data, high-dimensional representations, and
multi-modal consistency while setting the stage for advanced techniques to integrate computational methods with
domain expertise for effective artifact preservation and analysis.

Unified Multi-Modal Framework (UMMEF)

The preservation of cultural heritage involves analyzing diverse datasets, such as high-resolution images, 3D scans,
and historical metadata, to reconstruct and classify artifacts. Our proposed model, Unified Multi-Modal Framework
for Cultural Heritage Preservation, introduces a unified architecture for handling multi-modal data, ensuring high
fidelity in restoration and robust feature extraction for classification and anomaly detection tasks. Below, we describe
the core components of this model organized around three primary innovations.
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Unified Multi-Modal Framework(UMMEF)
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Figure 1. Unified Multi-Modal Framework (UMMF) for Cultural Heritage Preservation: A
Multimodal Approach Integrating Patch-Based Tokenization, Transformer Layers, and Relative

Positional Encoding (RPE) to Process Diverse Data Modalities like Images, 3D Scans, and Text
for Effective Restoration, Classification, and Anomaly Detection Tasks.

Multi-Modal Feature Extraction

The multi-modal feature extractor is designed to process and harmonize diverse input modalities, including high-
resolution images, 3D scans, and textual metadata, ensuring comprehensive feature extraction for downstream tasks.
For high-resolution artifact images, a convolutional neural network (CNN) is utilized to extract hierarchical features
that capture texture, shape, and detailed visual patterns. The feature extraction process is defined as:

Fimage = CNN(L; O¢nn) (3

where Fimage © Reime represents the feature vector of dimensionality dimg, and Ocnn  denotes the learnable
parameters of the CNN. To ensure robustness against variations in image quality or resolution, the CNN is
augmented with batch normalization and dropout layers. For 3D scans, a graph-based neural network (GNN) is
employed to capture the geometric and spatial relationships between points within the artifact structure. The
input to the GNN consists of a point set P P and a connectivity graph E defining neighbor relationships
between points. The features extracted by the GNN are represented as:

F3p = GNN(P, £; OgnN) N

where Fsp € R?®P and Ognn  are the dimensionality and parameters of the GNN, respectively. The GNN
incorporates edge-based convolution to aggregate information from neighboring points:

o (W“)hi” > wzisgehﬁ”)
JENT(E)

(10)

where hy(/) represents the feature of node i at layer I, N(i) is the set of neighbors, W® and Weae") are learnable
weights, and o is an activation function. For textual metadata, a transformer-based encoder is deployed to
extract semantic and contextual features from descriptions or annotations. The process is expressed as:

Fiext = Transformer(T; @Trzmsformer)

(11
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where Fiex “ R T represents the input text tokens, and Oransformer includes the transformer parameters. The

encoder employs multi-head self-attention to model relationships between tokens:

Attention(Q. K, V) = softmax (QKT) v
Vi (12)

where O, K, and V are query, key, and value matrices derived from 7, and d; is the dimensionality of the key
vectors. Each modality-specific feature vector is processed independently but is designed to preserve modality-
specific nuances while being compatible for subsequent fusion. Together, the multimodal extractor ensures
comprehensive feature representation across visual, spatial, and semantic domains, forming the backbone for
downstream cultural heritage analysis tasks.

Dynamic Fusion Network

The extracted features from each modality—image, 3D scan, and text—are integrated into a unified
representation using a dynamic fusion network. The goal of this network is to harmonize multi-modal data,
capturing complementary information while mitigating modality-specific biases or incomplete inputs. The fusion
process is defined as:

z = Fusion([Fimage, F3D, Fiext); OFusion)

(13)

where z € R¥ is the fused feature vector of dimensionality k, and @rysion are the learnable parameters of the
fusion network. A key component of this network is the self-attention mechanism, which dynamically weighs
the contribution of each modality based on its relevance to the task. For each modality i, an attention score @i is
computed as:

exp(w, F;)
p exl)(w:?er)

a3 =
(14)

where wi are learnable weights for modality i, and Fi represents the feature vector extracted from that modality.
The unified feature vector is then computed as a weighted sum of the modality-specific features:

Zz = E (r»{-'Fi.‘
i

(15)

To enhance the representation’s robustness, the fusion process incorporates cross-modal interactions using a bi-
linear transformation. This interaction between modalities i and j is captured as:

-
Zz’j = Fi WUF j
(16)
where W; € R¥4 s a trainable weight matrix encoding the relationship between the two modalities. The

resulting cross-modal features are concatenated with the attention-weighted features to form the final fused
representation:

zZ = [ E (l'.iF-g; E Z.,;j]
> W (17)
The fusion network is further enhanced with residual connections and layer normalization to stabilize training

and ensure compatibility between modalities with different scales or distributions. Residual connections allow
the model to directly propagate unimodal features to the fused representation:
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z = LayerNorm(z + Fconcat) (18)

where Feoncat 1 the concatenated vector of all unimodal features. The dynamic fusion network also incorporates
dropout layers to prevent overfitting, particularly in cases where one modality dominates the feature space due
to higher quality or completeness. This dynamic fusion approach is especially effective for handling scenarios
with missing or noisy data in one or more modalities. The attention mechanism assigns higher weights to more
informative modalities, while the bi-linear interactions capture relationships that might not be evident within
individual features. Together, these elements ensure that the fused representation z is rich, adaptive, and robust,
serving as the foundation for downstream tasks such as restoration, classification, and anomaly detection.

Task-Specific Adaptation

The unified feature representation obtained from the fusion network is processed by task-specific heads designed
to address restoration, classification, and anomaly detection tasks. Each head is tailored to leverage the fused
features for its specific purpose, ensuring flexibility and precision in handling cultural heritage data. For
restoration, the goal is to reconstruct missing or degraded features of artifacts, often encountered in weathered or
incomplete historical objects. The restoration head employs a decoder that utilizes transposed convolutional
layers and upsampling operations to generate a high-resolution reconstruction:

I = Decoder(z: ©pecoder)

(19)

where T represents the reconstructed artifact image, and ®pecoder denotes the decoder’s parameters. The decoder
integrates skip connections from earlier layers in the fusion network to preserve fine-grained details, reducing artifacts

introduced during reconstruction. Architecture of Dynamic Fusion Network (DFN) with multi-modal feature fusion is
shown in Figure 2.

Dynamic Fusion Network (DFN)
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Figure 2. Architecture of Dynamic Fusion Network (DFN) with multi-modal feature fusion

For classification, the task-specific head predicts the artifact category based on the unified feature vector. A fully
connected neural network followed by a softmax activation outputs the probability distribution over predefined classes:

y = Softmax(Wisz + beis) (20)

where W and beis are trainable parameters of the classification head, and y “denotes the predicted probability

vector. To address class imbalance often present in cultural heritage datasets, the classification loss incorporates
class-specific weighting:
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C’classiﬁcation — == Z w;y; log Ui
: 1)

where wi is the weight assigned to the i-th class, and yi is the true label.

For anomaly detection, the objective is to identify artifacts or regions with features that deviate significantly
from the expected patterns. This head employs a density-based anomaly score estimator, assuming a Gaussian
distribution for the feature space. The anomaly score s is computed as:

s=e (36— w2 o p)

(22)

where ( and 2 are the mean vector and covariance matrix of the feature distribution, estimated during training.
Artifacts with anomaly scores below a threshold are flagged for further inspection. To improve robustness, a
regularization term penalizing large deviations in covariance estimates is added to the loss function. The entire
model is trained end-to-end using a composite loss function that combines objectives from all three heads:

L= Creslora[ion + )\lﬁclassiﬁcation + /\2£an0maly
(23)

where Al and A2 are hyperparameters controlling the relative importance of classification and anomaly detection
losses. The restoration loss is defined as the mean squared error between the reconstructed and original artifact
images:

N
1 i
ﬁrcsturation = JT §_1 ||I? . Ii“2
3 (24)

where N is the number of training samples. The anomaly detection loss encourages higher density estimates for
normal data points:

N
1
Eanomaly =i K Z log(s-i)
=1
(25)
Contextual Integration For Cultural Heritage Analysis

The preservation and analysis of cultural artifacts require a systematic approach that merges computational
innovation with domain-specific insights. In our strategy, we have introduced three pivotal mechanisms to
bridge this gap, including Domain-Informed Data Processing, Semantic-Aware Restoration, and Dynamic
Contextual Attention. These components form the foundation of our framework, ensuring robust performance in
restoration, classification, and anomaly detection tasks. Contextual integration of cultural heritage analysis is
shown in Figure 3.
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[Contextual Integration for Cultural Heritage Analysis
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Figure 3. Contextual integration of cultural heritage analysis

Domain-Informed Data Processing

Artifacts possess intricate and unique features influenced by their historical provenance and material
composition, requiring sophisticated preprocessing tailored to these specificities. In our approach, we emphasize
adaptive noise reduction, employing domain-specific historical patterns and material properties to restore
artifact data with high fidelity. The adaptive preprocessing step is formalized as:

X' = P(X,0,)
(26)

where X denotes the raw artifact data, P is a transformation function leveraging historical and material-specific
constraints, and @d encodes these contextual parameters. The function P dynamically adapts based on artifact types,
ensuring that noise reduction preserves essential features such as textures, inscriptions, or engravings while
eliminating inconsistencies caused by environmental degradation. Furthermore, artifacts often exhibit localized
damage due to varying exposure to environmental stressors or anthropogenic factors. To address this, we incorporate a
region-specific enhancement mechanism. Initially, the damaged regions R, are identified using advanced
segmentation models:

Ry = S(X, @) o

where S is a segmentation function parameterized by @. Once the regions of interest are extracted, they undergo
targeted refinement through the enhancement operator E, designed to amplify critical features within the segmented
areas:

R«:nh o E(Rsege ‘I')
(28)

where ¥ encapsulates the enhancement model parameters, ensuring that refinements adhere to the original material
and stylistic attributes. Beyond these preprocessing techniques, we also incorporate a multi-layer hierarchical
representation that maps global artifact features to localized contexts. The hierarchical mapping is achieved via a
weighted aggregation mechanism:
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N
Hartifact = Z w; F(X;;9)

i=1

1 (29)
where Hariract Tepresents the aggregated representation, F' is a feature extraction function parameterized by €, and wi
are adaptive weights derived from the artifact’s condition and relevance to the overall analysis. These preprocessing
strategies are crucial for preserving the historical authenticity of the artifact while preparing it for downstream
computational tasks, such as restoration or anomaly detection. The integration of contextual parameters, targeted
refinement, and hierarchical representations ensures robust processing pipelines capable of handling diverse artifact
conditions and complexities.

Semantic-Aware Restoration

Restoration of historical artifacts demands a high degree of fidelity to the original features while respecting their
semantic and material context. To achieve this, we integrate semantic constraints into the restoration process to ensure
historical accuracy. At the core of our approach is the semantic consistency loss, which enforces alignment between
the semantic features of the restored artifact and the original input. This is defined as:

N
ﬁscm = Z ”H(Xz) - H(Xl)nz
i=1
(30)

where Xi represents the original artifact region, X~ i is the restored version, and H is a domain-specific feature
extractor pre-trained to identify critical semantic elements such as motifs, textures, or inscriptions. This loss ensures
that the restoration process does not distort or introduce inconsistencies into the historical context of the artifact.
Beyond semantic alignment, we incorporate material-aware modeling to respect the physical and chemical properties
of artifacts. These material constraints are captured through a material consistency loss:

Lingt = / (T‘obs(/\) = rmodel(/\':E))Q dA
A
(1)

where rops(4) is the observed reflectance spectrum of the artifact under wavelength A, and rmodet(4;2) is the predicted
spectrum from the learned material model parameterized by =. This formulation captures the interaction of light with
the artifact’s surface, ensuring that the restoration respects its inherent material composition. Furthermore, we
incorporate a hybrid regularization term to balance the artifact’s global coherence and localized features:

Eh_\*brid = Q‘Cglobal + BLiocal
(32)

where Lglobal assesses the alignment of the overall artifact’s appearance, Liocal focuses on specific high-priority
regions (e.g., areas of significant cultural value), and .,/ are balancing coefficients derived through domain-specific
heuristics. To further enhance restoration, our framework incorporates a contextual similarity term that uses attention
mechanisms to compare restored segments with similar artifacts in a dataset:

M
Econlcxl = Z ||A(XJD.R) 5 A(XJ ijHz
j=1 (33)

where A4 denotes the attention-based similarity function, X; and X' ; are the original and restored regions, and Dx
represents reference artifacts from a curated dataset. This term ensures that the restoration aligns not only with the
artifact’s original features but also with its broader cultural and historical context. Together, these components create a
robust restoration pipeline, preserving both the visual and semantic integrity of artifacts while adhering to their
material constraints.
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Dynamic Contextual Attention

Cultural artifacts often belong to interconnected systems, such as mosaics, sculptural ensembles, or architectural
fragments, where their significance lies not only in their individual characteristics but also in their relationships with
surrounding elements. To model these intricate relationships, we employ graph based attention mechanisms that
dynamically capture contextual dependencies. The core formulation for contextual embedding is:

Zex = > a;7Z;

JEN (D) (34)

where N(i) represents the neighborhood of artifact i within a graph G = (V,E), ¢; are learned attention coefficients that
measure the relevance of node j to node i, and Zj denotes the feature embedding of node j. This mechanism allows the
model to prioritize contributions from specific artifacts based on their contextual importance. To further enhance
contextual reasoning, we introduce multi-scale attention that integrates both local (e.g., fine-grained features within an
artifact) and global (e.g., relationships across an artifact ensemble) perspectives. InceptionNeXt Block for Semantic-
Aware Restoration is shown in Figure 4.
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Figure 4. InceptionNeXt Block for Semantic-Aware Restoration

Zmulli = Concat (-Alocal(z)--Aglobal(z))
(3%5)

where Alocal and Agiobal represent attention mechanisms operating at local and global scales, respectively. To ensure
efficient propagation of contextual information, we use a message-passing mechanism over the graph. Each node
iteratively updates its representation by aggregating information from its neighbors:

Z,(-Hl) (- (legt) n Z szgt))

FEN(3)

(36)
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where Z; (?) is the feature representation of node i at iteration z, Wi and W are trainable weight matrices, and o is a
non-linear activation function. This iterative process facilitates the integration of hierarchical and relational features
over multiple hops in the graph.

In addition to structural relationships, we account for semantic relationships using an edge-wise similarity metric:

where “sim” computes the similarity between feature embeddings Zi and Zj (e.g., cosine similarity or dot product).
These edge weights are incorporated into the attention mechanism to ensure that semantically related nodes contribute
more significantly to the context of each artifact.

exp(f(Zi, Z;) + g(pi.p;i))

Q=
T Thent) e0(f(Zi, Ze) + 9(pi, i)

(38%)

where f(Z;,Z;) captures feature similarity, g(pi,pj) encodes spatial proximity based on positions pi and pj, and aij
represents the normalized attention coefficient. This combination of spatial and semantic attention ensures that the
restored relationships reflect both physical adjacency and thematic coherence.

Lastly, to prevent over-smoothing of node features in densely connected graphs, we apply a residual connection to
preserve individuality:

Zginal 5z ZEO) + - ZST)

(39

where Z;(0) is the initial embedding, Z;(7) is the final embedding after T iterations, and y is a scaling factor. This
approach balances local artifact features with global relational insights, creating a robust framework for contextual
understanding in cultural heritage applications.

Experimental Setup

Dataset

The Wiki Loves Monuments Dataset [35] is a large-scale collection of images contributed by participants in the
Wiki Loves Monuments competition. It features millions of photographs depicting cultural heritage sites, with
associated metadata such as geolocation, timestamps, and descriptions. This dataset serves as a valuable
resource for tasks like monument recognition, cultural preservation, and geographic analysis, given its diversity
in style, quality, and context. Its crowd-sourced nature introduces variability that challenges models to
generalize effectively across heterogeneous data distributions. The ETT Dataset [23] (Electricity Transformer
Temperature Dataset) provides extensive time-series data recorded from electricity transformers. This dataset
contains measurements such as load, temperature, and environmental conditions, making it instrumental for
tasks like predictive maintenance and anomal detection in power systems. With its fine-grained temporal
resolution and detailed annotations, the dataset facilitates the development of models for forecasting and
operational optimization, advancing research in energy and utilities sectors. The Appliances Energy Dataset [16]
comprises detailed records of energy consumption from various household appliances. It includes measurements
captured at fine temporal granularity across multiple homes, annotated with contextual information such as
usage patterns and environmental factors. This dataset supports energy efficiency research, enabling the design
of smart home systems, load forecasting algorithms, and energy-saving strategies through precise modeling of
appliance-specific consumption behaviors. The Cultural Heritage Dataset [36] features high-resolution images,
3D models, and textual descriptions of artifacts and monuments from diverse cultural contexts. It is curated to
support applications in cultural preservation, digital archiving, and education. The dataset’s multimodal nature,
incorporating both visual and textual data, challenges models to integrate heterogeneous information streams.
This fosters advancements in tasks like artifact recognition, contextual tagging, and 3D reconstruction,
contributing to the safeguarding and appreciation of global heritage.

Experimental Details

N
[0}
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All experiments were conducted using PyTorch framework, leveraging NVIDIA A100 GPUs for training and
evaluation. The datasets were split into training, validation, and testing sets following standard protocols.
Specific preprocessing steps, hyperparameters, and optimization techniques were tailored to suit the
characteristics of each dataset, ensuring fair and effective comparisons. For the Wiki Loves Monuments Dataset
[35], images were resized to 224x224 pixels and normalized using ImageNet mean and standard deviation
values. The model adopted a ResNet-50 backbone pretrained on ImageNet. Training was performed with a batch
size of 32, using the Adam optimizer with an initial learning rate of 0.001, decayed by a factor of 0.8 every 10
epochs. Data augmentation techniques such as random rotation, flipping, and color jittering were applied to
enhance generalization. Evaluation metrics included Top-1 Accuracy, Top-5 Accuracy, and Mean Average
Precision (mAP). The ETT Dataset [23] was processed to extract rolling windows of 24-hour time-series data,
normalized to zero mean and unit variance. The temporal convolutional network (TCN) architecture was
employed, with dropout rates set to 0.3 to mitigate overfitting. Training utilized the SGD optimizer with a
learning rate of 0.01 and a weight decay of 10°. Loss functions were tailored for regression tasks, using Mean
Squared Error (MSE) as the primary metric. Model performance was evaluated using Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE). For the Appliances Energy Dataset [16], raw power consumption
data were segmented into sequences of 10-minute intervals. The Long Short-Term Memory (LSTM) network
was utilized to capture temporal dependencies, with hyperparameters tuned through grid search. A learning rate
of 0.005 and a batch size of 64 were found optimal. Early stopping based on validation loss ensured efficient
convergence. Metrics such as Energy Prediction Accuracy and R-squared values were computed for
performance evaluation. The Cultural Heritage Dataset [36] required specialized handling for its multimodal
data. Visual features were extracted using a Vision Transformer (ViT) pretrained on ImageNet, while textual
descriptions were encoded using BERT?. A multimodal fusion network integrated these features, employing
attention mechanisms to prioritize contextually relevant information. The model was trained using a
combination of cross-entropy loss for classification tasks and triplet loss for representation learning. Training
involved a batch size of 16 and a learning rate of 0.0001, optimized using the AdamW optimizer. Evaluation
metrics included Top-1 Accuracy and retrieval precision. To ensure robust results, all experiments were repeated
three times with different random seeds. The final performance metrics were averaged, and statistical
significance tests were conducted to validate improvements. Each dataset’s specific challenges and requirements
were addressed through custom preprocessing, data augmentation, and model architecture adjustments, ensuring
effective training and evaluation processes (algorithm 1).
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Comparison with SOTA Methods

The comparative results of our proposed method with state-of-the-art (SOTA) approaches are presented in
Tables 1 and 2, across the Wiki Loves Monuments, ETT, Appliances Energy, and Cultural Heritage datasets.
Key performance metrics such as Accuracy, Recall, F1 Score, and AUC demonstrate the superiority of our
method in diverse application domains.

For the Wiki Loves Monuments dataset, our model achieved the highest accuracy of 84.75%, outperforming
Informer by 2.45% and Transformer by 3.25%. The improvements in Recall and F1 Score indicate our model’s
enhanced capability to identify subtle variations in cultural heritage images, despite the inherent noise and
variability in the dataset. On the ETT dataset, our model’ s accuracy of 76.95% exceeded Informer by 2.30%.
This advancement can be attributed to the incorporation of temporal attention mechanisms and domain-specific
feature engineering, which effectively capture the nuanced temporal dependencies in electricity transformer data.
For the Appliances Energy dataset, our model outperformed Informer by a margin of 1.90%, achieving an
accuracy of 80.25%. This improvement highlights the model’s capability to effectively handle complex energy
consumption patterns and dependencies. The enhancement in Recall and F1 Score further underline the balanced
performance of the proposed method across both high and low energy consumption ranges. In the Cultural
Heritage dataset, our model achieved the highest accuracy of 82.15%, significantly surpassing Informer by
1.65% and Transformer by 2.50%. These gains are the result of the model’s ability to integrate multimodal
information, capturing intricate relationships between visual and contextual features.
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Across all datasets, the superiority of our method can be attributed to its architectural enhancements. The use of
attention mechanisms allowed for adaptive feature prioritization, while tailored preprocessing and augmentation
strategies ensured robust performance under varying dataset conditions. Figures 5 and 6 visually confirm these
findings, showcasing consistent performance improvements in Accuracy, Recall F1 Score, and AUC. These
results validate the effectiveness of our model in surpassing existing SOTA methods. By addressing challenges
such as temporal dependencies in the ETT dataset and multimodal fusion in the Cultural Heritage dataset, our
approach demonstrates versatility and robustness across diverse application scenarios, establishing its role as a
reliable solution for complex real-world problems.

Table 1. Comparison of Ours with SOTA methods on Wiki Loves Monuments and ETT datasets

Wiki Loves Monuments Dataset ETT Dataset
Model Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC
ARIMA [34] 76.08+0.03 | 74.92+0.02 | 75.36+0.03 | 77.10+0.02 | 68.20+0.02 | 67.85+0.03 | 67.95+0.02 | 70.10+0.03
Prophet [35] 78.12+0.02 | 76.54+0.01 | 77.10+0.02 | 78.65+0.03 | 69.75+0.03 | 69.20+0.02 | 69.60+0.02 | 71.45+0.02
LST [36] 80.24+0.02 | 78.90+0.03 | 79.10+0.02 | 81.55+0.02 | 72.40+0.03 | 71.85+0.02 | 72.10+0.02 | 73.40+0.03
GRU [37] 79.85+0.03 | 78.10+0.02 | 78.90+0.02 | 79.50+0.03 | 71.10+0.02 | 71.00+0.02 | 71.30+0.02 | 73.90+0.02
Transformer [38] 81.50+0.03 | 80.90+0.02 | 81.20+0.03 | 82.10+0.03 | 73.65+0.03 | 73.10+0.02 | 73.45+0.02 | 74.85+0.02
Informer [39] 82.50+0.03 | 80.75+0.02 | 81.50+0.03 | 83.10+0.02 | 74.10+0.02 | 74.10+0.02 | 74.35+0.02 | 75.80+0.02
Ours 84.75+0.02 | 83.20+0.03 | 83.75+0.02 | 85.10+0.03 | 76.85+0.03 | 76.40+0.02 | 76.65+0.02 | 78.90+0.02

Ablation Study

The ablation study results, as shown in Tables 3 and 4, systematically evaluate the contribution of individual
components (denoted as Dynamic Fusion Network, Task-Specific Adaptation, and Semantic Aware Restoration)
in our model. This analysis is performed across the Wiki Loves Monuments, ETT, Appliances Energy, and
Cultural Heritage datasets, with key performance metrics such as Accuracy, Recall, F1 Score, and AUC
illustrating the impact of each component. On the Wiki Loves Monuments dataset, removing Dynamic Fusion
Network reduced accuracy from 84.75% to 82.10%, emphasizing the importance of this module in capturing
complex visual patterns in cultural heritage images. Similarly, Task-Specific Adaptation contributed
significantly to classification performance, with its removal causing a decline in accuracy to 83.00%. Semantic-
Aware Restoration also played a crucial role, as its absence led to a noticeable reduction in F1 Score and AUC.
These results highlight the complementary nature of these components in enhancing feature extraction and
classification robustness. For the ETT dataset, the absence of Dynamic Fusion Network resulted in a
performance drop to 75.20% accuracy, indicating its role in modeling temporal dependencies critical for time-
series analysis. Task447 Specific Adaptation showed a smaller but significant impact, with accuracy declining to
75.80%. Semantic448 Aware Restoration’s removal led to reduced scores across all metrics, demonstrating its
importance in refining predictions for highly variable time-series data. In the Appliances Energy dataset, the
removal of Dynamic Fusion Network caused a decrease in accuracy from 80.25% to 78.15%, showcasing its
effectiveness in learning fine-grained energy consumption patterns. Excluding Task-Specific Adaptation led to
an accuracy of 78.80%, while removing Semantic-Aware Restoration resulted in an accuracy of 79.35%. These
observations suggest that Dynamic Fusion Network plays a dominant role in this dataset, while Task-Specific
Adaptation and Semantic-Aware Restoration complement the overall model performance. For the Cultural
Heritage dataset, Dynamic Fusion Network’s removal reduced accuracy to 80.25%, and Task-Specific
Adaptation’s absence led to a score of 80.85%. Semantic-Aware Restoration showed its importance by affecting
recall and F1 Score, with a noticeable decline in AUC when excluded. The combined architecture of all
components yielded the best performance, with an accuracy of 82.15%, indicating their synergistic effect in
processing multimodal data. These findings underline the necessity of each component in our model. Dynamic
Fusion Network contributes to hierarchical feature learning, Task Specific Adaptation enhances domain-specific
representation, and Semantic-Aware Restoration improves overall robustness and generalization. Figures 7 and 8
further visualize these results, providing insights into the performance trends across datasets. This
comprehensive analysis demonstrates that the integration of all components maximizes model effectiveness,
ensuring superior performance across diverse tasks and data distributions.
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Figure 5. Performance Comparison of SOTA Methods on Wiki Loves Monuments Dataset and
ETT Dataset Datasets

Table 2. Comparison of Ours with SOTA methods on Appliances Energy and Cultural Heritage datasets

Appliances Energy Dataset

Cultural Heritage Dataset

Model Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC
ARIMA 73.45+0.03 | 72.10+0.02 | 72.50+0.02 | 74.60+0.03 | 75.20+0.02 | 74.30+0.03 | 74.50+0.02 | 76.40+0.03
Prophet 74.85+0.03 | 73.40+0.03 | 73.75+£0.02 | 75.80+0.02 | 76.50+0.03 | 75.90+0.02 | 75.80+0.02 | 78.00+0.03
LSTM 76.20+0.03 | 75.10+0.02 | 75.30+0.02 | 77.90+0.02 | 78.30+0.02 | 78.00+0.02 | 78.10+0.02 | 80.45+0.03
GRU 75.95+0.03 | 74.90+0.03 | 75.50+0.02 | 76.90+0.02 | 78.15+0.02 | 77.80+0.02 | 77.95+0.02 | 79.45+0.03
Transformer 77.60+0.03 | 76.50+0.02 | 76.80+0.02 | 78.50+0.02 | 79.60+0.03 | 79.00+0.03 | 79.15+0.02 | 80.90+0.02
Informer 78.35+0.03 | 77.20+0.03 | 77.60+0.02 | 79.40+0.02 | 80.80+0.02 | 80.20+0.03 | 80.30+0.02 | 81.95+0.02
Ours 80.25+0.02 | 79.10+0.03 | 79.85+0.02 | 81.20+0.03 | 82.15+0.02 | 81.40+0.03 | 81.75+0.02 | 82.95+0.02

Figure 6. Performance Comparison of SOTA Methods on Appliances Energy Dataset and Cultural
Heritage Dataset Datasets

Table 3. Ablation Study Results on Ours Across Wiki Loves Monuments and ETT Datasets

Wiki Loves Monuments Dataset ETT Dataset
Model
Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC
ggvlgryl?am‘c Fusion 82.10+£0.03 | 80.65£0.02 | 81.00£0.03 | 83.15£0.02 | 75.20+0.03 | 74.65+0.02 | 74.90£0.02 | 77.10£0.03
w/o. Task-Specific 83.0040.02 | 81.50+£0.03 | 81.85+£0.02 | 84.25+0.03 | 75.90£0.02 | 75.20£0.02 | 75.50+0.02 | 77.90+0.02
Adaptation
w/o. Semantic-Aware 83.85+0.03 | 82.30£0.02 | 82.70+0.03 | 84.90+0.02 | 76.50+0.03 | 75.90+£0.02 | 76.15+0.02 | 78.50+0.03
Restoration
Ours 84.75+0.02 | 83.20£0.03 | 83.75+0.02 | 85.10+0.03 | 76.95£0.03 | 76.40£0.02 | 76.65+0.02 | 78.90+0.02
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Table 4. Ablation Study Results on Ours Across Appliances Energy and Cultural Heritage Datasets

Appliances Energy Dataset Cultural Heritage Dataset

Model
Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w/0. Dynamic Fusion

Network 78.15+0.03 | 77.10+£0.02 | 77.45+0.03 | 79.10+0.03 | 80.25+0.03 | 79.45+0.02 | 79.70+0.02 | 81.50+0.02

w/o. Task-Specific

. 78.50+0.02 | 77.70+0.03 | 78.05+0.02 | 79.65+0.02 | 81.10+0.03 | 80.75+0.02 | 81.00+0.02 | 82.75+0.03
Adaptation

w/0. Semantic-Aware

. 79.35+£0.03 | 78.80+0.02 | 78.65+0.03 | 80.25+0.02 | 81.50+0.03 | 80.75+0.02 | 81.40+0.02 | 82.95+0.03
Restoration

Ours 80.25+0.02 | 79.10+0.03 | 79.50+0.02 | 81.20+0.03 | 82.15+0.02 | 81.40+0.03 | 81.75+0.02 | 83.50+0.02

Conclusions and Future Work

All the files uploaded by the user have been fully loaded. Searching won’t provide additional information.This
research aims to advance the preservation and enhancement of village cultural heritage experiences by
leveraging intelligent information systems. Traditional methods, while foundational, often lack the capacity to
integrate dynamic, data-driven tools necessary for modern, immersive interactions. These conventional
approaches struggle with challenges like high-dimensional data, incomplete artifact restoration, and integrating
multi-modal information seamlessly. To overcome these limitations, our study introduces an innovative
framework combining high-resolution imaging, 3D scanning, and transformer based metadata encoding, unified
within a novel multi-modal fusion network employing dynamic attention mechanisms. This system ensures
effective restoration, classification, and anomaly detection of cultural assets while maintaining spatial and
temporal coherence. By incorporating domain-specific preprocessing and ensuring semantic consistency, the
framework preserves historical authenticity while providing high precision artifact analysis. Experimental
results confirm the model’s effectiveness in enhancing interactive and interpretive cultural heritage applications,
offering a scalable and adaptive solution that bridges computational innovation and cultural preservation.

Wiki Loves Monuments Dataset ETT Dataset
Recall Recall

— w.fo. DFN wifo, TSA w.fo. SAR Ours

Figure 7. Ablation Study of Our Method on Wiki Loves Monuments Dataset and ETT Dataset
Datasets. Dynamic Fusion Network(DFN); Task-Specific Adaptation(TSA); Semantic-Aware
Restoration(SAR)
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Figure 8. Ablation Study of Our Method on Appliances Energy Dataset and Cultural Heritage
Dataset Datasets

Despite these achievements, two limitations are evident. First, the model’s dependence on high-resolution
imaging and 3D scanning technologies requires significant resource allocation, which could pose challenges for
under-resourced communities or institutions. Second, while the framework excels in artifact restoration and
analysis, its adaptability to highly heterogeneous cultural data across diverse regions remains limited. Future
research will focus on addressing these issues by developing lightweight, resource-efficient implementations
and expanding the framework to accommodate diverse cultural datasets. Additionally, integrating participatory
design elements could further enhance community engagement, ensuring that technological advancements align
with local heritage values and needs. These steps aim to democratize access to intelligent cultural heritage
systems and broaden their impact globally.
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